1,177
Views
63
CrossRef citations to date
0
Altmetric
Review

Translating Ocular Biomechanics into Clinical Practice: Current State and Future Prospects

, , , , , , & show all
Pages 1-18 | Received 13 Jan 2014, Accepted 02 Apr 2014, Published online: 15 May 2014

REFERENCES

  • Fung YC. Biomechanics: Mechanical properties of living tissues. 2nd ed. New York, NY: Springer-Verlag; 1993
  • McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci 2009;86:E23–E30
  • Sigal IA, Roberts MD, Girard MJA, Burgoyne CF, Downs JC. Biomechanical changes of the optic disc. Ocular disease: mechanisms and management. New York: Elvesier; 2009
  • Amini R, Whitcomb JE, Al-Qaisi MK, Akkin T, Jouzdani S, Dorairaj S, et al. The posterior location of the dilator muscle induces anterior iris bowing during dilation, even in the absence of pupillary block. Invest Ophthalmol Vis Sci 2012;53:1188–1194
  • Camras LJ, Stamer WD, Epstein D, Gonzalez P, Yuan F. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Invest Ophthalmol Vis Sci 2012;53:5242–5250
  • Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol 2010;9:65–76
  • Sinha Roy A, Rocha KM, Randleman JB, Stulting RD, Dupps WJ Jr. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus. Exp Eye Res 2013;113:92–104
  • Pedrigi RM, Dziezyc J, Humphrey JD. Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery. Exp Eye Res 2009;89:575–580
  • Rom ME, Keller WB, Meyer CJ, Meisler DM, Chern KC, Lowder CY, et al. Relationship between corneal edema and topography. CLAO J 1995;21:191–194
  • Maurice DM. The cornea and sclera. In: Davson H, editor. The Eye. Orlando, FL: Academic Press; 1984. pp. 1–158
  • Dupps WJ Jr, Roberts C. Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg 2001;17:658–669
  • Meek KM, Newton RH. Organization of collagen fibrils in the corneal stroma in relation to mechanical properties and surgical practice. J Refract Surg 1999;15:695–699
  • Edmund C. Corneal topography and elasticity in normal and keratoconic eyes. A methodological study concerning the pathogenesis of keratoconus. Acta Ophthalmol Suppl 1989;193:1–36
  • Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophth Vis Sci 1991;32:2244–2258
  • Polack FM. Morphology of the cornea. I. Study with silver stains. Am J Ophthalmol 1961;51:1051–1056
  • Smolek MK, McCarey BE. Interlamellar adhesive strength in human eyebank corneas. Invest Ophth Vis Sci 1990;31:1087–1095
  • Winkler M, Chai D, Kriling S, Nien CJ, Brown DJ, Jester B, et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest Ophthalmol Vis Sci 2011;52:8818–8827
  • Winkler M, Shoa G, Xie Y, Petsche SJ, Pinsky PM, Juhasz T, et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Invest Ophthalmol Vis Sci 2013; 54:7293–7301
  • Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg 2008;24:S85–S89
  • Smolek MK. Interlamellar cohesive strength in the vertical meridian of human eye bank corneas. Invest Ophthalmol Vis Sci 1993;34:2962–2969
  • Meek KM, Tuft SJ, Huang Y, Gill PS, Hayes S, Newton RH, et al. Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 2005;46:1948–1956
  • Morishige N, Wahlert AJ, Kenney MC, Brown DJ, Kawamoto K, Chikama T, et al. Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci 2007;48:1087–1094
  • Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res 1980;31:435–441
  • Dawson DG, Randleman JB, Grossniklaus HE, O'Brien TP, Dubovy SR, Schmack I, et al. Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. Ophthalmology 2008;115:2181–91
  • Dupps WJ, Jr. Wilson SE. Biomechanics and wound healing in the cornea. Exp Eye Res 2006;83:709–720
  • Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology 2008;115:37–50
  • Elsheikh A, Anderson K. Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2005;2:177–185
  • Dupps WJ Jr. Ectasia risk: barriers to understanding. J Cataract Refract Surg 2012;38:735–736
  • Roy AS, Dupps WJ Jr. Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci 2011;52:9174–9187
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31:156–162
  • Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci 2013;54:5078–5085
  • Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 2007;48:3026–3031
  • Kirwan C, O'Malley D, O'Keefe M. Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica 2008;222:334–337
  • Schweitzer C, Roberts CJ, Mahmoud AM, Colin J, Maurice-Tison S, Kerautret J. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol Vis Sci 2010;51:2403–2410
  • Mikielewicz M, Kotliar K, Barraquer RI, Michael R. Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus. Br J Ophthalmol 2011;95:793–798
  • Hallahan KM, Roy AS, Ambrosio R, Salomao M, Dupps JWJ. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmol 2014;121:459--468
  • Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging. IEEE Trans Med Imag 2009;28:1881–1893
  • Ford MR, Dupps WJ Jr, Rollins AM, Roy AS, Hu Z. Method for optical coherence elastography of the cornea. J Biomed Opt 2011;16:016005
  • Armstrong BK, Lin MP, Ford MR, Santhiago MR, Singh V, Grossman GH, et al. Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits. J Refract Surg 2013;29:332–341
  • Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye. Opt Express 2012;20:9197–9202
  • Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci 2013;54:1418–1425
  • Hanna KD, Jouve FE, Waring GO. Preliminary computer simulation of the effects of radial keratotomy. Arch Ophthalmol 1989;107:911–918
  • Vito RP, Shin TJ, McCarey BE. A mechanical model of the cornea: the effects of physiological and surgical factors on radial keratotomy surgery. Refract Corneal Surg 1989;5:82–88
  • Pinsky PM, Datye DV. A microstructurally-based finite element model of the incised human cornea. J Biomech 1991;24:907–922
  • Velinsky SA, Bryant MR. On the computer-aided and optimal design of keratorefractive surgery. Refract Corneal Surg 1992;8:173–182
  • Hanna KD, Jouve FE, Waring GO, Ciarlet PG. Computer simulation of arcuate and radial incisions involving the corneoscleral limbus. Eye 1989;3:227–239
  • Pinsky PM, Datye DV. Numerical modeling of radial, astigmatic, and hexagonal keratotomy. Refract Corneal Surg 1992;8:164–172
  • Hanna KD, Jouve FE, Waring GO, Ciarlet PG. Computer simulation of arcuate keratotomy for astigmatism. Refract Corneal Surg 1992;8:152–163
  • Studer HP, Riedwyl H, Amstutz CA, Hanson JV, Buchler P. Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery. J Biomech 2013;46:751–758
  • Bryant MR FD, Campos M, McDonnell PJ. Finite element analysis of corneal topographic changes after excimer laser phototherapeutic keratectomy. Invest Ophthalmol Vis Sci 1993;31:804
  • Katsube N, Wang R, Okuma E, Roberts C. Biomechanical response of the cornea to phototherapeutic keratectomy when treated as a fluid-filled porous material. J Refract Surg 2002;18:S593–S597
  • Uchio E, Watanabe Y, Kadonosono K, Matsuoka Y, Goto S. Simulation of airbag impact on eyes after photorefractive keratectomy by finite element analysis method. Graefes Arch Clin Exp Ophthalmol 2003;241:497–504
  • Alastrue V, Calvo B, Pena E, Doblare M. Biomechanical modeling of refractive corneal surgery. J Biomech Eng 2006;128:150–160
  • Deenadayalu C, Mobasher B, Rajan SD, Hall GW. Refractive change induced by the LASIK flap in a biomechanical finite element model. Journal of refractive surgery (Thorofare, NJ : 1995) 2006;22:286–292
  • Pandolfi A, Manganiello F. A model for the human cornea: constitutive formulation and numerical analysis. Biomechan Model Mechanobiol 2006;5:237--246
  • Roy AS, Dupps WJ Jr. Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: A whole-eye finite element analysis. J Refract Surg 2009;25:875–887
  • Sinha Roy A, Dupps WJ Jr. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng 2011;133:011002
  • Kling S, Marcos S. Finite-element modeling of intrastromal ring segment implantation into a hyperelastic cornea. Invest Ophthalmol Vis Sci 2013;54:881–889
  • Gefen A, Shalom R, Elad D, Mandel Y. Biomechanical analysis of the keratoconic cornea. Journal of the mechanical behavior of biomedical materials 2009;2:224–236
  • Carvalho LA, Prado M, Cunha RH, Costa Neto A, Paranhos A, Jr Schor P, et al. Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arq Bras Oftalmol 2009;72:139–145
  • Roy AS, Dupps WJ Jr. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng 2011;133:011002
  • Seven I, Sinha Roy A, Dupps WJ. Patterned corneal collagen crosslinking for astigmatism: A computational modeling study. J Cataract Refract Surg 2014 . [epub ahead of print]
  • Seven I, Dupps JWJ. Patient-specific finite element simulations of standard incisional astigmatism surgery and a novel patterned collagen crosslinking approach to astigmatism treatment. J Med Dev 2013: in press
  • Quigley HA. The iris is a sponge: a cause of angle closure. Ophthalmology 2010;117:1–2
  • Saheb H, Ahmed II. Micro-invasive glaucoma surgery: current perspectives and future directions. Curr Opin Ophthalmol 2012;23:96–104
  • Lee RY, Huang G, Porco TC, Chen YC, He M, Lin SC. Differences in iris thickness among african americans, #caucasian |americans, #Hispanic |americans, #chinese |americans, and filipino-americans. J Glaucoma 2013;22:673–678
  • Wang BS, Narayanaswamy A, Amerasinghe N, Zheng C, He M, Chan YH, et al. Increased iris thickness and association with primary angle closure glaucoma. Br J Ophthalmol 2011;95:46–50
  • Zheng C, Cheung CY, Aung T, Narayanaswamy A, Ong SH, Friedman DS, et al. In vivo analysis of vectors involved in pupil constriction in Chinese subjects with angle closure. Invest Ophthalmol Vis Sci 2012;53:6756–6762
  • Wyatt HJ. A ‘minimum-wear-and-tear’ meshwork for the iris. Vision Res 2000;40:2167–2176
  • Whitcomb JE, Amini R, Simha NK, Barocas VH. Anterior-posterior asymmetry in iris mechanics measured by indentation. Exp Eye Res 2011;93:475–481
  • Amini R, Barocas VH. Anterior chamber angle opening during corneoscleral indentation: the mechanism of whole eye globe deformation and the importance of the limbus. Invest Ophthalmol Vis Sci 2009;50:5288–5294
  • Sihota R, Goyal A, Kaur J, Gupta V, Nag TC. Scanning electron microscopy of the trabecular meshwork: understanding the pathogenesis of primary angle closure glaucoma. Indian journal of ophthalmology 2012;60:183–188
  • Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 2011;52:2147–2152
  • McKee CT, Wood JA, Shah NM, Fischer ME, Reilly CM, Murphy CJ, et al. The effect of biophysical attributes of the ocular trabecular meshwork associated with glaucoma on the cell response to therapeutic agents. Biomaterials 2011;32:2417–2423
  • Ethier CR, Read AT, Chan D. Biomechanics of Schlemm's canal endothelial cells: influence on F-actin architecture. Biophys J 2004;87:2828–2837
  • Zeng D, Juzkiw T, Read AT, Chan DW, Glucksberg MR, Ethier CR, et al. Young's modulus of elasticity of Schlemm's canal endothelial cells. Biomech Model Mechanobiol 2010;9:19–33
  • WuDunn D. Mechanobiology of trabecular meshwork cells. Exp Eye Res 2009;88:718–723
  • Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nature medicine 2011;17:1010–1014
  • Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, et al. Visualization of the conventional outflow pathway in the living human eye. Ophthalmology 2012;119:1563–1568
  • Kagemann L. IOP elevation reduces Schlemm's canal cross-sectional area. IOVS 2014;55:1805--1809
  • Glasser A. Restoration of accommodation: surgical options for correction of presbyopia. Clinical and Experimental Optometry 2008;91:279–295
  • von Helmholz HH. Handbuch der Physiologishen Optik. Leipzig, Germany: Leopold Voss; 1909
  • Murphy SL, Xu J, KD K. Deaths: Preliminary Data for 2010. Natl Vital Stat Rep 2012;60:30
  • Ostrin LA, Glasser A. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys. Experimental Eye Research 2007;84:302–313
  • Danyush BP, Duncan MK. The lens capsule. Exp Eye Res 2009;88:151--164
  • Fisher R. Elastic constants of the human lens capsule. J Physiol 1969;201:1–20
  • McLeod SD. The challenge of presbyopia. Arch Ophthalmol 2002;120:1572–1574
  • Schachar R, Pierscionek B. Lens hardness not related to the age-related decline of accommodative amplitude. Mol Vis 2007;13:1010–1011
  • Belaidi A, Pierscionek B. Modeling internal stress distributions in the human lens: can opponent theories coexist? J Vis 2007;7:1–13
  • Coleman DJ, Fish SK. Presbyopia, accommodation, and the mature catenary. Ophthalmology 2001;108:1544–1551
  • Glasser A, Campbell M. Presbyopia and the optical changes in the human crystalline lens with age. Vision research 1998;38:209–238
  • Glasser A, Campbell M. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia. Vision research 1999;39:1991–4006
  • Fisher RF. Elastic constants of human lens. J Physiol London 1971;212:147–180
  • Manns F, Parel J-M, Denham D, Billotte C, Ziebarth N, Borja D, et al. Optomechanical response of human and monkey lenses in a lens stretcher. Invest Ophthalmol Vis Sci 2007;48:3260–3328
  • Weeber HA, Eckert G, Pechhold W, van der Heijde RGL. Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 2007;245:1357–1366
  • Baradia H, Nikand N, Glasser A. Mouse lens stiffness measurements. Exp Eye Res 2010;91:300–307
  • Erpelding TN, Hollman KW, O'Donnell M. Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force. Exp Eye Res 2007;84:332–341
  • Dekorte CL, Vandersteen AFW, Thijssen JM, Duindam JJ, Otto C, Puppels GJ. Relation between local acoustic parameters and protein distribution in human and procine eye lenses. Exp Eye Res 1994;59:617–627
  • Pau H, Kranz J. The increasing sclerosis of the human lens with age and its relevance to accommodation and presbyopia. Graefes Arch Clin Exp Ophthalmol 1991;229:294–300
  • Heys K, Cram S, Truscott R. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis 2004;10:956–1019
  • Weeber H, Eckert G, Pechhold W, van der Heijde R. Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol 2007;245:1357–1423
  • Hollman K, O'Donnell M, Erpelding T. Mapping elasticity in human lenses using bubble-based acoustic radiation force. Exp Eye Res 2007;85:890–893
  • Schachar R, Chan R, Fu M. Viscoelastic properties of fresh human lenses under 40 years of age: implications for the aetiology of presbyopia. Br J Ophthalmol 2011;95:1010–1013
  • Wilde GS, Burd HJ, Judge SJ. Shear modulus data for the human lens determined from a spinning lens test. Exp Eye Res 2012;97:36–48
  • Weeber H, van der Heijde R. On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res 2007;85:602–609
  • Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 2003;5:57–78
  • Scarcelli G, Yun SH. Brillouin Confocal Microscopy for three-dimensional mechanical imaging. Nature Photonics 2008;2:39–43
  • Scarcelli G, Yun SH. In vivo Brillouin optical microscopy of the human eye. Optics Express 2012;20:9197
  • Scarcelli G, Kim P, Yun S. In vivo measurement of age-related stiffening in the crystalline lens by brillouin optical microscopy. Biophys J 2011;101:1539–1584
  • Bailey S, Twa M, Gump J, Venkiteshwar M, Bullimore M, Sooryakumar R. Light-scattering study of the normal human eye lens: elastic properties and age dependence. IEEE Trans Biomed Eng 2010;57:2910–2917
  • NIA. Growing Older in America: The Health and Retirement Study. NIH (ed), http://www.nia.nih.gov/sites/default/files/health_and_retirement_study_0.pdf
  • Reggiani Mello G, Krueger R. Femtosecond laser photodisruption of the crystalline lens for restoring accommodation. Int Ophthalmol Clin 2011;51:87–182
  • Lichtinger A, Rootman DS. Intraocular lenses for presbyopia correction: past, present, and future. Current Opinion in Ophthalmology 2012;23:40–46
  • Sheppard AL, Bashir A, Wolffsohn JS, Davies LN. Accommodating intraocular lenses: a review of design concepts, usage and assessment methods. Clin Exp Optom 2010;93:441–452
  • Blum RD, Burns WR, Till JS, inventors; Presbyopia treatment by lens alteration. 2012. https://www.google.com/patents/US8147816
  • Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A. First safety study of femtosecond laser photodisruption in animal lenses: Tissue morphology and cataractogenesis. J Cataract Refract Surg 2005;31:2386–2394
  • Kessler J. Experiments in refilling lens. Arch Ophthalmol 1964;71:412--417
  • Parel JM, Gelender H, Trefers WF, Norton EWD. PHACO-ERSATZ - CATARACT-SURGERY DESIGNED TO PRESERVE ACCOMMODATION. Graefes Archive for Clinical and Experimental Ophthalmology 1986;224:165–173
  • McGinty SJ, Truscott RJW. Presbyopia: The first stage of nuclear cataract? Ophthalmic Vis Res 2006;38:137–148
  • Heys KR, Truscott RJW. The stiffness of human cataract lenses is a function of both age and the type of cataract. Exp Eye Res 2008;86:701–703
  • Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: Does deamidation contribute to crystallin insolubility? J Proteome Res 2006;5:2554–66
  • Friedrich MG, Truscott RJW. Membrane Association of Proteins in the Aging Human Lens: Profound Changes Take Place in the Fifth Decade of Life. Invest. Ophthalmol. Vis. Sci. 2009;50:4786–4793
  • Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol 1983;95:673–691
  • Bengtsson B, Heijl A. Diurnal IOP fluctuation: not an independent risk factor for glaucomatous visual field loss in high-risk ocular hypertension. Graefe's Arch Clin Exper Ophthalmol 2005;243:513–518
  • Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology 2004;111:1627–1635
  • Morrison JC, Nylander KB, Lauer AK, Cepurna WO, Johnson E. Glaucoma drops control intraocular pressure and protect optic nerves in a rat model of glaucoma. Invest Ophthalmol Vis Sci 1998;39:526–531
  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 2002;120:1268–1279
  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002;120:701–713
  • Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol 1981;99:137–143
  • Boland MV, Quigley HA. Risk factors and open-angle glaucoma: classification and application. J Glaucoma 2007;16:406–418
  • Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 2006;141:868–875
  • Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond) 2009;23:606–611
  • Hommer A, Fuchsjaeger-Mayrl G, Resch H, Vass C, Garhofer G, Schmetterer L. Estimation of ocular rigidity based on pneumotonometric measurement of pulse amplitude and laser interferometric measurement of fundus pulse in patients with primary open angle glaucoma. Invest Ophthalmol Vis Sci 2008;49:4046--4050
  • Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci 2012;53:1714–1728
  • Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci 2012;52:7109–7121
  • Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci 2000;41:2991–3000
  • Sigal IA, Yang H, Roberts MD, Burgoyne CF, Downs JC. IOP-induced lamina cribrosa displacement and scleral canal expansion: an analysis of factor interactions using parameterized eye-specific models. Invest Ophthalmol Vis Sci 2011:30;52:1896--1907
  • Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 2005;46:4189–5019
  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci 2011;52:5656–5669
  • Morrison JC, Dorman-Pease ME, Dunkelberger GR, Quigley HA. Optic nerve head extracellular matrix in primary optic atrophy and experimental glaucoma. Arch Ophthalmol 1990;108:102010–102014
  • Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 1997;64:85–96
  • Soto I, Pease ME, Son JL, Shi X, Quigley HA, Marsh-Armstrong N. Retinal ganglion cell loss in a rat ocular hypertension model is sectorial and involves early optic nerve axon loss. Invest Ophthalmol Vis Sci 2011;52:434–441
  • Wong AA, Brown RE. A neurobehavioral analysis of the prevention of visual impairment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2012;53:5956–5666
  • Sun D, Lye-Barthel M, Masland RH, Jakobs TC. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. The Journal of comparative neurology 2009;516:1–19
  • Zhou J, Rappaport EF, Tobias JW, Young TL. Differential gene expression in mouse sclera during ocular development. Invest Ophthalmol Vis Sci 2006;47:1794–1802
  • Olsen TW, Aaberg SY, Geroski DH, Edelhauser HF. Human sclera: thickness and surface area. Am J Ophthalmol 1998;125:237–241
  • Hernandez MR, Andrzejewska WM, Neufeld AH. Changes in the extracellular matrix of the human optic nerve head in primary open-angle glaucoma. Am J Ophthalmol 1990;109:180–188
  • Quigley HA, Dorman-Pease ME, Brown AE. Quantitative study of collagen and elastin of the optic nerve head and sclera in human and experimental monkey glaucoma. Curr Eye Res 1991;10:877–888
  • Quigley HA, Brown A, Dorman-Pease ME. Alterations in elastin of the optic nerve head in human and experimental glaucoma. Br J Ophthalmol 1991;75:552–557
  • Yan D, McPheeters S, Johnson G, Utzinger U, Vande Geest JP. Microstructural differences in the human posterior sclera as a function of age and race. Invest Ophthalmol Vis Sci 2011;52:821–829
  • Pijanka JK, Coudrillier B, Ziegler K, Sorensen T, Meek KM, Nguyen TD, et al. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human sclerae. Invest Ophthalmol Vis Sci 2012;53:5258–5270
  • Girard MJ, Dahlmann-Noor A, Rayapureddi S, Bechara JA, Bertin BM, Jones H, et al. Quantitative mapping of scleral fiber orientation in normal rat eyes. Invest Ophthalmol Vis Sci 2012;52:9684–9693
  • Myers KM, Cone FE, Quigley HA, Gelman S, Pease ME, Nguyen TD. The in vitro inflation response of mouse sclera. Exp Eye Res 2010;91:866–875
  • Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci 2000;41:2028–34
  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009;50:5226–5237
  • Girard MJ, Downs JC, Bottlang M, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics-PART II: experimental and inverse finite element characterization. J Biomech Eng 2009;131:051012
  • Grytz R, Fazio MA, Girard MJ, Libertiaux V, Bruno L, Gardiner S, et al. Material properties of the posterior human sclera. J Mech Behav Biomed Mater 2014;29:602--617
  • Fazio MA, Grytz R, Bruno L, Girard MJ, Gardiner S, Girkin CA, et al. Regional Variations in Mechanical Strain in the Posterior Human Sclera. Invest Ophthalmol Vis Sci 2012;53:5326--5333
  • Cone FE, Steinhart MR, Oglesby EN, Kalesnykas G, Pease ME, Quigley HA. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp Eye Res 2012;99:27–35
  • Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 2010;91:415–424
  • Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, et al. Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Molecular vision 2012;18:1093–1106
  • Steinhart MR, Cone-Kimball E, Nguyen C, Nguyen TD, Pease ME, Chakravarti S, et al. Susceptibility to glaucoma damage related to age and connective tissue mutations in mice. Exp Eye Res 2014;119:54–60
  • Cone-Kimball E, Nguyen C, Oglesby EN, Pease ME, Steinhart MR, Quigley HA. Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice. Mol Vis 2013;19:2023–2039
  • Pease ME, Oglesby EN, Cone-Kimball E, Jefferys JL, Steinhart MR, Kim AJ, et al. Scleral Permeability Varies by Mouse Strain and Is Decreased by Chronic Experimental Glaucoma. Invest Ophthalmol Vis Sci 2014;55:2564--2573
  • Oglesby EN, Steinhart MR, Tezel G, Cone-Kimball E, Jefferys JL, Pease ME, et al. Scleral Fibroblast Response to Experimental Glaucoma in Mice. IOVS 2014;Acpected for publication
  • Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res 2006;82:185–200
  • Strouthidis NG, Girard MJA. Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Current Opinion in Pharmacology 2013;13:83--89
  • Quigley HA, Cone FE. Development of diagnostic and treatment strategies for glaucoma through understanding and modification of scleral and lamina cribrosa connective tissue. Cell Tissue Res 2013;353:231–244
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135:620–627
  • Sigal IA, Grimm JL, Schuman JS, Kagemann L, Ishikawa H, Wollstein G. A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography. IEEE Trans Med Imaging 2014. [epub ahead of print]
  • Girard MJ, Strouthidis NG, Desjardins A, Mari JM, Ethier CR. In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm. J R Soc Interface 2013;10:20130459
  • Tang J, Liu J. Ultrasonic measurement of scleral cross-sectional strains during elevations of intraocular pressure: method validation and initial results in posterior porcine sclera. J Biomech Eng 2012;134:091007
  • Murienne BJ, Nguyen TD. Proteoglycan contribution to the mechanical behavior of the porcine posterior sclera. Amer Soc Mech Engin 2012;:427–428
  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nature genetics 2003;33:407–411
  • Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. The Journal of clinical investigation 2004;114:1586–1592
  • Sethi A, Mao W, Wordinger RJ, Clark AF. Transforming growth factor-beta induces extracellular matrix protein cross-linking lysyl oxidase (LOX) genes in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011;52:5240–5250
  • Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC. Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 2007;48:3161–3177
  • Pena JD, Taylor AW, Ricard CS, Vidal I, Hernandez MR. Transforming growth factor beta isoforms in human optic nerve heads. Br J Ophthalmol 1999;83:209–218
  • Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 2011;332:361–365
  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006;312:117–121
  • Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem 2004;279:18121–18126
  • Quigley HA. Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest Ophthalmol Vis Sci 2005;46:2662–2670
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 2005;24:39–73
  • Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res 2009;88:799–807
  • Sigal IA. Interactions between geometry and mechanical properties on the optic nerve head. Invest Ophthalmol Vis Sci 2009;50:2785–2795
  • Roberts MD, Liang Y, Sigal IA, Grimm J, Reynaud J, Bellezza A, et al. Correlation between Local Stress and Strain and Lamina Cribrosa Connective Tissue Volume Fraction in Normal Monkey Eyes. Invest Ophthalmol Vis Sci 2010;51:295–307
  • Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 2011;93:4–12
  • Girard MJ, Downs JC, Burgoyne CF, Suh JK. Peripapillary and posterior scleral mechanics-part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng 2009;131:051011
  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 2009;50:5226--5237
  • Grytz R, Sigal IA, Ruberti JW, Meschke G, Downs JC. Lamina Cribrosa Thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech Mater 2012;44:99–109
  • Yan DB, Coloma FM, Metheetrairut A, Trope GE, Heathcote JG, Ethier CR. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol 1994;78:643–648
  • Yang H, Downs JC, Girkin C, Sakata L, Bellezza A, Thompson H, et al. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci 2007;48:4597–4607
  • Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 2004;45:2660–2665
  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. 3D morphometry of the human optic nerve head. Exp Eye Res 2010;90:70–80
  • Sigal IA, Grimm JL, Jan NJ, Reid K, Minckler DS, Brown DJ. Eye-specific iop-induced displacements and deformations of human lamina cribrosa. Invest Ophthalmol Vis Sci 2014;55:1--15
  • Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, et al. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci 2009;50:681–690
  • Sigal IA, Flanagan JG, Lathrop KL, Tertinegg I, Bilonick R. Human lamina cribrosa insertion and age. Invest Ophthalmol Vis Sci 2012;53:6870–6879
  • Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci 2011;52:7109–7121
  • Girard MJ, Strouthidis NG, Ethier CR, Mari JM. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest Ophthalmol Vis Sci 2011;52:7738–7748
  • Wang B, Nevins JE, Nadler Z, Wollstein G, Ishikawa H, Bilonick RA, et al. In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:8270–8274
  • Mari JM, Strouthidis NG, Park SC, Girard MJ. Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Invest Ophthalmol Vis Sci 2013;54:2238–2247
  • Sigal IA, Wang B, Strouthidis NG, Akagi T, Girard MJA. Recent advances in OCT imaging of the lamina cribrosa. Br J Ophthalmol 2014 (In-Press)
  • Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology 2011;118:52–59
  • Lee EJ, Kim TW, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 2012;119:1359–1366
  • Kim TW, Kagemann L, Girard MJ, Strouthidis NG, Sung KR, Leung CK, et al. Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr Eye Res 2013;38:903–909
  • Girard MJA, Zimmo L, White E, Mari JM, Ethier CR, Strouthidis NG. Towards a Biomechanically-based Diagnosis for Glaucoma: In vivo Deformation Mapping of the Human Optic Nerve Head ASME 2012 Summer Bioengineering Conference; June 20-23, Fajardo, Puerto Rico, USA2012
  • Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Kagemann L, et al. Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express 2013;4:2596–2608
  • Foin N, Mari JM, Nijjer S, Sen S, Petraco R, Ghione M, et al. Intracoronary imaging using attenuation-compensated optical coherence tomography allows better visualisation of coronary artery diseases. Cardiovascular revascularization medicine: including molecular interventions 2013:14:139--143
  • Akagi T, Hangai M, Takayama K, Nonaka A, Ooto S, Yoshimura N. In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012;53:4111–4119
  • Nadler Z, Wang B, Wollstein G, Nevins JE, Ishikawa H, Kagemann L, et al. Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes. Biomed Opt Express 2013;4:2596–2608
  • Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, et al. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Invest Ophthalmol Vis Sci 2011;52:5473–5480
  • Sredar N, Ivers KM, Queener HM, Zouridakis G, Porter J. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes. Biomed Opt Express 2013;4:1153–1165
  • Sigal IA, Bilonick RA, Kagemann L, Wollstein G, Ishikawa H, Schuman JS, et al. The optic nerve head as a robust biomechanical system. Invest Ophthalmol Vis Sci 2012;53:2658–2667

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.