1,053
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Bevacizumab Revisited: Its Use in Different Mouse Models of Ocular Pathologies

, , , , , & show all
Pages 611-621 | Received 18 Apr 2014, Accepted 06 Jul 2014, Published online: 12 Aug 2014

REFERENCES

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 19964;380:435–439
  • Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res Off J Am Assoc Cancer Res 2006;12:5018–5022
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676
  • Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 2003;31:1171–1177
  • Lutty GA, Chan-Ling T, Phelps DL, Adamis AP, Berns KI, Chan CK, et al. Proceedings of the Third International Symposium on Retinopathy of Prematurity: an update on ROP from the lab to the nursery (November 2003, Anaheim, California). Mol Vis 2006;12:532–580
  • Budd SJ, Thompson H, Hartnett ME. Association of retinal vascular endothelial growth factor with avascular retina in a rat model of retinopathy of prematurity. Arch Ophthalmol 2010;128:1014–1021
  • Ferrara N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med 2010;16:1107–1111
  • Sharma NK, Gupta A, Prabhakar S, Singh R, Sharma S, Anand A. Single nucleotide polymorphism and serum levels of VEGFR2 are associated with age related macular degeneration. Curr Neurovasc Res 2012;9:256–265
  • Takahashi K, Ishibashi T, Ogur Y, Yuzawa M. Classification and diagnostic criteria of age-related macular degeneration. Nihon Ganka Gakkai Zasshi 2008;112:1076–1084
  • Li Z, Van Bergen T, Van de Veire S, Van de Vel I, Moreau H, Dewerchin M, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2009;50:5217–5225
  • Yan QS, Zheng SZ, Yan SE. Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res [Research Support, U.S. Gov't, Non-P.H.S.] 2004;1021:82–91
  • Van Bergen T, Jonckx B, Hollanders K, Sijnave D, Van de Velde S, Vandewalle E, et al. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med 2013;17:1632–1643
  • Zheng MS, Takahashi H, Miyazaki A, Hamamoto H, Shah J, Yamaguchi I, et al. Up-regulation of Arabidopsis thaliana NHL10 in the hypersensitive response to Cucumber mosaic virus infection and in senescing leaves is controlled by signalling pathways that differ in salicylate involvement. Planta [Research Support, Non-U.S. Gov't] 2004;218:740–750
  • Midgley R, Kerr D. Bevacizumab—current status and future directions. Ann Oncol Off J Eur Soc Med Oncol 2005;16:999–1004
  • Marty M, Pivot X. The potential of anti-vascular endothelial growth factor therapy in metastatic breast cancer: clinical experience with anti-angiogenic agents, focusing on bevacizumab. Eur J Cancer 2008;44:912–920
  • Nishikimi T. Role of the Rho/Rho-kinase pathway in the development of hypertensive glomerulosclerosis: renoprotective effect of Rho-kinase inhibitor in hypertensive glomerulosclerosis and its molecular mechanism. Nihon Yakurigaku Zasshi [Research Support, Non-U.S. Gov't Review] 2006;128:153–159
  • Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 2006;113:363–372
  • Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006;113:1695--1705
  • Iturralde D, Spaide RF, Meyerle CB, Klancnik JM, Yannuzzi LA, Fisher YL, et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina 2006;26:279–284
  • Wakabayashi T, Oshima Y, Sakaguchi H, Ikuno Y, Miki A, Gomi F, et al. Intravitreal bevacizumab to treat iris neovascularization and neovascular glaucoma secondary to ischemic retinal diseases in 41 consecutive cases. Ophthalmology 2008;115:1571–1580
  • Bocci G, Man S, Green SK, Francia G, Ebos JM, du Manoir JM, et al. Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 2004;64:6616–6625
  • Bocci G, Danesi R, Marangoni G, Fioravanti A, Boggi U, Esposito I, et al. Antiangiogenic versus cytotoxic therapeutic approaches to human pancreas cancer: an experimental study with a vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor and gemcitabine. Eur J Pharmacol 2004;498:9–18
  • Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 2010;141:178–190
  • Huang H, Shen J, Vinores SA. Blockade of VEGFR1 and 2 suppresses pathological angiogenesis and vascular leakage in the eye. PLoS One [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. 2011;6:e21411
  • Shi X, Zhao M, Xie WK, Liang JH, Miao YF, Du W, et al. Inhibition of neovascularization and expression shift of pro-/anti-angiogenic vascular endothelial growth factor isoforms after intravitreal bevacizumab injection in oxygen-induced-retinopathy mouse model. Chin Med J (Engl) 2013;126:345–352
  • Davis SJ, Lyzogubov VV, Tytarenko RG, Safar AN, Bora NS, Bora PS. The effect of nicotine on anti-vascular endothelial growth factor therapy in a mouse model of neovascular age-related macular degeneration. Retina [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2012;32:1171–1180
  • Seet LF, Finger SN, Wong TT. Bevacizumab prolongs bleb survival in a mouse model of glaucoma filtration surgery by attenuating pro-fibrotic gene expression. Invest Ophthalmol Vis Sci 2012;53: ARVO E-Abstract 6353
  • Yu L, Wu X, Cheng Z, Lee CV, LeCouter J, Campa C, et al. Interaction between bevacizumab and murine VEGF-A: a reassessment. Invest Ophthalmol Vis Sci 2008;49:522–527
  • Presta LG, Chen H, O'Connor SJ, Chisholm V, Meng YG, Krummen L, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997;57:4593–4599
  • Ryan SJ. The development of an experimental model of subretinal neovascularization in disciform macular degeneration. Trans Am Ophthalmol Soc 1979;77:707–745
  • Dobi ET, Puliafito CA, Destro M. A new model of experimental choroidal neovascularization in the rat. Arch Ophthalmol 1989;107:264–269
  • Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, et al. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 1998;153:1641–1646
  • Van Bergen T, Jonckx B, Hollanders K, Sijnave D, Van de Velde S, Vandewalle E, et al. Inhibition of placental growth factor improves surgical outcome of glaucoma surgery. J Cell Mol Med [Research Support, Non-U.S. Gov't] 2013;17:1632–1643
  • Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994;35:101–111
  • Scott A, Fruttiger M. Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye (Lond) 2010;24:416–421
  • Gerschman R, Nadig PW, Snell AC, Jr Nye SW. Effect of high oxygen concentrations on eyes of newborn mice. Am J Physiol 1954;179:115–118
  • Gole GA, Browning J, Elts SM. The mouse model of oxygen-induced retinopathy: a suitable animal model for angiogenesis research. Doc Ophthalmol 1990;74:163–169
  • Gyllensten LJ, Hellstrom BE. Experimental approach to the pathogenesis of retrolental fibroplasia. I. Changes of the eye induced by exposure of newborn mice to concentrated oxygen. Acta Paediatr Suppl 1954;43:131–148
  • Michaelson IC, Herz N, Kertesz D. Effect of increased oxygen concentration on new vessel growth in the adult cornea. Br J Ophthalmol 1954;38:588–590
  • Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 2010;51:2813–2826
  • Seet LF, Lee WS, Su R, Finger SN, Crowston JG, Wong TT. Validation of the glaucoma filtration surgical mouse model for antifibrotic drug evaluation. Mol Med 2011;17:557–567
  • Lambert V, Munaut C, Jost M, Noel A, Werb Z, Foidart JM, et al. Matrix metalloproteinase-9 contributes to choroidal neovascularization. Am J Pathol 2002;161:1247–1253
  • Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nature protocols [Research Support, Non-U.S. Gov't] 2013;8:2197–2211
  • Gu X, Samuel S, El-Shabrawey M, Caldwell RB, Bartoli M, Marcus DM, et al. Effects of sustained hyperoxia on revascularization in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 2002;43:496–502
  • Beddy D, Watson RW, Fitzpatrick JM, O'Connell PR. Increased vascular endothelial growth factor production in fibroblasts isolated from strictures in patients with Crohn's disease. Br J Surg 2004;91:72–77
  • Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 1998;152:1445–1452
  • Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest J Tech Meth Pathol 2008;88:579–590
  • Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 1999;274:37385–37390
  • Van de Velde S, Van Bergen T, Sijnave D, Hollanders K, Castermans K, Defert O, et al. AMA0076, a novel, locally acting rho kinase inhibitor, potently lowers intraocular pressure in New Zealand white rabbits with minimal hyperemia. Invest Ophthal Visual Sci 2014;55:1006–1016
  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83–95
  • Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006;24:16–24
  • Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005;23:8136–8139
  • Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 2006;281:951–961
  • Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3:391–400
  • Bock F, Onderka J, Dietrich T, Bachmann B, Kruse FE, Paschke M, et al. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophth Vis Sci 2007;48:2545–2552
  • Hos D, Koch KR, Bucher F, Bock F, Cursiefen C, Heindl LM. Serum eyedrops antagonize the anti(lymph)angiogenic effects of bevacizumab in vitro and in vivo. Invest Ophthalmol Vis Sci 2013;54:6133–6142
  • Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 2009;11:48–56
  • Yang H, Jager MJ, Grossniklaus HE. Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't] 2010;51:2835–2842
  • el Filali M, Ly LV, Luyten GP, Versluis M, Grossniklaus HE, van der Velden PA, et al. Bevacizumab and intraocular tumors: an intriguing paradox. Mol Vis [Research Support, Non-U.S. Gov't] 2012;18:2454–2467
  • Lee SH, Leem HS, Jeong SM, Lee K. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep 2009;42:800–805
  • Folkesson HG, Matthay MA, Hebert CA, Broaddus VC. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms. J Clin Invest [Research Support, U.S. Gov't, P.H.S.] 1995;96:107–116
  • Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki PO, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med [Research Support, Non-U.S. Gov't] 2009;50:2033–2041
  • Dastjerdi MH, Sadrai Z, Saban DR, Zhang Q, Dana R. Corneal penetration of topical and subconjunctival bevacizumab. Invest Ophthalmol Vis Sci 2011;52:8718–8723
  • Hollanders K, Van Bergen T, Sijnave D, Van de Velde S, Vandewalle E, Moons L, et al. Optimal administration route of bevacizumab after glaucoma filtration surgery. Invest Ophthalmol Vis Sci 2013;53: ARVO E-Abstract 4496
  • Kitzmann A, Leske D, Chen Y, Kendall A, Lanier W, Holmes J. Incidence and severity of neovascularization in oxygen- and metabolic acidosis-induced retinopathy depend on rat source. Curr Eye Res [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 2002;25:215–220
  • Penn JS, Henry MM, Tolman BL. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 1994;36:724–731
  • Rohan RM, Fernandez A, Udagawa T, Yuan J, D'Amato RJ. Genetic heterogeneity of angiogenesis in mice. FASEB J [In Vitro Research Support, Non-U.S. Gov't] 2000;14:871–876
  • Holmes JM, Zhang S, Leske DA, Lanier WL. Metabolic acidosis-induced retinopathy in the neonatal rat. Invest Ophthalmol Vis Sci 1999;40:804–809
  • Gao G, Li Y, Fant J, Crosson CE, Becerra SP, Ma JX. Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium-derived factor in brown Norway and sprague dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] 2002;51:1218–1225

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.