330
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Cellular Response of Limbal Stem Cells on Polycaprolactone Nanofibrous Scaffolds for Ocular Epithelial Regeneration

, &
Pages 326-333 | Received 11 Nov 2014, Accepted 09 Feb 2015, Published online: 21 Apr 2015

References

  • Klyce SD, Beuerman RW. Structure and function of the cornea. In: Kaufman HE, Barron BA, McDonald MB, Waltman SR, editors. The cornea. New York, Edinburgh, London, Melbourne: Churchill Livingstone; 1988:3–15
  • Ang LPK, Tan DTH, Beuerman RW, Lavker RM. Ocular surface epithelial stem cells: implications for ocular surface homeostasis. In: Pflugfelder SC, Beuerman RW, Stern ME, editors. Dry eye and ocular surface disorders. New York: Marcel Dekker; 2004:63–88
  • Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology 1989;96:709–722
  • Kenyon KR. Limbal autograft transplantation for chemical and thermal burns. Dev Ophthalmol 1989;18:53–58
  • Sangwan VS. Limbal stem cells in health and disease. Biosci Rep 2001;21:385–405
  • Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med 2000;343:86–93
  • Tseng SC, Tsai RJ. Limbal transplantation for ocular surface reconstruction – a review. Fortschr Ophthalmol 1991;88:236–242
  • Shimazaki J, Yang HY, Tsubota K. Limbal autograft transplantation for recurrent and advanced pterygia. Ophthalmic Surg Lasers 1996;27:917–923
  • Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A. Bone marrow stem cells and polymer hydrogels—two strategies for spinal cord injury repair. Cell Mol Neuro Biol 2006;25:1113–1129
  • Dubios G, Segers VF, Bellamy V, Sabbah L, Peyrard S, Bruneval P, et al. Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J Bio Med Mater Res B Appl Biomater 2008;87:222–228
  • Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem deficiency. Transplantation 2001;72:1478–1485
  • Schwab IR, Johnson NT, Harkim DG. Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 2006;124:1734–1740
  • Deshpande P, Ramachandran C, Sefat F, Mariappan I, Johnson C, McKean R, et al. Simplifying corneal surface regeneration using a biodegradable synthetic membrane and limbal tissue explants. Biomaterials 2013;34:5088–5106
  • Tsai RJ, Li LM, Chen JK. Reconstruction of dam aged cornea by transplantation of autologous limbal epithelial cells. N Engl J Med 2000;343:86–93
  • Choi SM, Singh D, Kumar A, Oh TH, Cho Y, Woo H, et al. Porous three-dimensional PVA/gelatin sponge for skin tissue engineering. Int J Polym Mater Polym Biomater 2013;62:384–389
  • Zhang W, Wang P, Wang Y, Fu W, Pua X, Zhang F, et al. Development of a cross-linked polysaccharide of Ligusticum wallichii – squid skin collagen scaffold fabrication; and property studies for tissue-engineering applications. Int J Polym Mater Polym Biomater 2013;63:65–68
  • Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci 2002;99: 5133–5138
  • Fong H, Weidong L, Wang CS, Vaia RA. Generation of electrospun fibers of nylon 6; and nylon 6-montmorillonite nanocomposite. Polymer 2002;43:775–780
  • Redenti S, Tao S, Yang J, Gu P, Klassen H, Saigal S, et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J Ocul Biol Dis Infor 2008;1:19–29
  • Zhang H, Migneco F, Lin CY, Hollister SJ. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 2010;16:3441–3448
  • Dai NT, Yeh MK, Chiang CH, Chen KC, Liu TH, Feng AC. Human single-donor composite skin substitutes based on collagen and polycaprolactone copolymer. Biochem Biophys Res Commun 2009;386:21–25
  • Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 1999;25:111–121
  • Liu J, Zhao B, Zhang Y, Lin Y, Hu P, Ye C. PHBV and predifferentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res A 2010;94:603–610
  • Majdi A, Biazar E, Heidari S. Fabrication and comparison of electro-spun PHBV nanofiber and normal film and its cellular study. Orient J Chem 2011;27:523–528
  • Biazar E, Zhang Z, Heidari S. Cellular orientation on micro-patterned biocompatible PHBV film. J Paramed Sci 2010;1:74–77
  • Rezaei-Tavirani M, Biazar E, Ai J, Heidari S, Asefnejad A. Fabrication of collagen-coated poly(beta-hydroxy butyrate-cobeta-hydroxyvalerate) nanofiber by chemical; and physical methods. Orient J Chem 2011;27:385–395
  • Ai J, Heidari SK, Ghorbani F, Ejazi F, Biazar E, Asefnejad A, et al. Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method; and its cellular study. J Nanomater 2011;2011:1–7
  • Biazar E, Heidari SK. Chitosan-cross-linked nanofibrous PHBV nerve guide for rat for sciatic nerve regeneration across a defect bridge. ASAIO J 2013;59:651–659
  • Biazar E, Heidari SK. A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Commun Adhes 2013;20:41–49
  • Montazeri M, Rashidi N, Biazar E, Rad H, Sahebalzamani M, Heidari S, et al. Compatibility of cardiac muscle cells on coated-gelatin electro-spun polyhydroxybutyrate-valerate nano fibrous film. Biosci Biotech Res ASIA 2011;8:515–521
  • Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asi V, Ahmadbeigi N, Soudi S, et al. In vitro differentiation of human cord blood-derived unrestricted stem cells into hepatocyte-like cells on poly(ypsilon-caprolactone) nanofiber scaffolds. Cells Tissues Organs 2009;190:135–149
  • Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 2006;24:426–433
  • Shin YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 2006;24:2391–2397
  • Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009;30:354–362
  • Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 2007;28:316–325
  • Keshel SH, Soleimani M, Tavirani MR, Ebrahimi M, Raeisossadati R, Yasaei H, et al. Evaluation of unrestricted somatic stem cells as a feeder layer to support undifferentiated embryonic stem cells. Mol Reprod Dev 2012;79:709–718
  • Baradaran-Rafii A, Raeisossadati R, Keshel SH. Ex vivo culture of limbal stem cells: unrestricted somatic stem cell from umbilical cord blood serving as a limbal stem cell feeder layer. Cornea ( in press)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.