480
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

The Suppression of Wound Healing Response with Sirolimus and Sunitinib Following Experimental Trabeculectomy in a Rabbit Model

, , &
Pages 367-376 | Received 24 Oct 2014, Accepted 22 Feb 2015, Published online: 21 Apr 2015

References

  • Cook C, Foster P. Epidemiology of glaucoma: what's new? Can J Ophthalmol 2012;47:223–226
  • Coleman AL. Advances in glaucoma treatment and management: surgery. Invest Ophthalmol Vis Sci 2012;53:2491–2494
  • Salim S. Current variations of glaucoma filtration surgery. Curr Opin Ophthalmol 2012;23:89–95
  • Seibold LK, Sherwood MB, Kahook MY. Wound modulation after filtration surgery. Surv Ophthalmol 2012;57:530–550
  • Yoon PS, Singh K. Update on antifibrotic use in glaucoma surgery, including use in trabeculectomy and glaucoma drainage implants and combined cataract and glaucoma surgery. Curr Opin Ophthalmol 2004;15:141–146
  • Holló G. Wound healing and glaucoma surgery: modulating the scarring process with conventional antimetabolites and new molecules. Dev Ophthalmol 2012;50:79–89
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011;12:21–35
  • Hardt M, Chantaravisoot N, Tamanoi F. Activating mutations of TOR (target of rapamycin). Genes Cells 2011;16:141–151
  • Delgoffe GM, Powell JD. mTOR: taking cues from the immune microenvironment. Immunology 2009;127:459–465
  • Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003;35:7S–14S
  • Mukherjee T, Shah BV. Sirolimus: a new immunosuppressant. J Assoc Phys India 2005;53:885–890
  • Salas-Prato M, Assalian A, Mehdi AZ, Duperre J, Thompson P, Brazeau P. Inhibition by rapamycin of PDGF- and bFGF-induced human tenon fibroblast proliferation in vitro. J Glaucoma 1996;5:54–59
  • Yan ZC, Bai YJ, Tian Z, Hu HY, You XH, Lin JX, et al. Anti-proliferation effects of Sirolimus sustained delivery film in rabbit glaucoma filtration surgery. Mol Vis 2011;17:2495–2506
  • Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003;9:327–337
  • Ko BY, Kim YS, Baek SG, Lee GW, Kim JM, Jean WS, et al. Inhibition of corneal neovascularization by subconjunctival and topical bevacizumab and sunitinib in a rabbit model. Cornea 2013;32:689–695
  • Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, Javaloy J, Alió JL. Inhibition of corneal neovascularization by topical bevacizumab (anti-VEGF) and sunitinib (anti-VEGF and anti-PDGF) in an animal model. Am J Ophthalmol 2010;15:519–528
  • Takahashi H, Obata R, Tamaki I. A novel vascular endothelial growth factor receptor 2 inhibitor, SU11248, suppresses choroidal neovascularization in vivo. J Ocul Pharmacol Ther 2006;22:213–218
  • Lockwood A, Brocchini S, Khaw PT. New developments in the pharmacological modulation of wound healing after glaucoma filtration surgery. Curr Opin Pharmacol 2013;13:65–71
  • Brancato SK, Albina JE. Wound macrophages as key regulators of repair origin, phenotype, and function. Am J Pathol 2011;178:19–25
  • Futamura Y, Matsumoto K. Characteristics of peripheral blood monocytes and bone marrow macrophages from rats treated with mitomycin C, 5-fluorouracil or phenylhydrazine. J Toxicol Sci 1995;20:1–7
  • Chang L, Crowston JG, Cordeiro MF, Akbar AN, Khaw PT. The role of the immune system in conjunctival wound healing after glaucoma surgery. Surv Ophthalmol 2000;45:49–68
  • Imanishi J, Kamiyama K, Iguchi I, Kita M, Sotozono C, Kinoshita S. Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 2000;19:113–129
  • Cordeiro MF, Gay JA, Khaw PT. Human anti-transforming growth factor-beta 2 antibody: a new glaucoma antiscarring agent. Invest Ophthalmol Vis Sci 1999;40:2225–2234
  • Sullivan KM, Lorenz HP, Meuli M, Lin RY, Adzick NS. A model of scarless human fetal wound repair is deficient in transforming growth factor beta. J Pediatr Surg 1995;30:198–203
  • Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. New Engl J Med 1994;331:1286–1292
  • Shah M, Foreman DM, Ferguson MW. Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 1992;339:213–214
  • Doxey DL, Ng MC, Dill RE. Platelet-derived growth factor levels in wounds of diabetic rats. Life Sci 1995;57:1111–1123
  • Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2002;83:835–870
  • Pejnovic N, Lilic D, Zunic G. Aberrant levels of cytokines within the healing wound after burn injury. Arch Surg 1995;130:999–1006
  • Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ Jr, Pittelkow MR. Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 1989;138:511–518
  • Honma Y, Nishida K, Sotozono C, Kinoshita S. Effect of transforming growth factor-beta1 and -beta2 on in vitro rabbit corneal epithelial cell proliferation promoted by epidermal growth factor, keratinocyte growth factor, or hepatocyte growth factor. Exp Eye Res 1997;65:391–396
  • Wilson SE, Schultz GS, Chegini N, Weng J, He YG. Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea. Exp Eye Res 1994;59:63–72
  • Heldin C-H, Westermark B. Mechanism of action and in vivo role of platelet derived growth factor. Physiol Rev 1999;79:1283–1316
  • Betsholtz C, Karlsson L, Lindahl P. Developmental roles of platelet-derived growth factors. Bio Essays 2001;23:494–507
  • Denk PO, Hoppe J, Hoppe V, Knorr M. Effect of growth factors on the activation of human Tenon's capsule fibroblasts. Curr Eye Res 2003;27:35–44
  • Knorr M, Volker M, Denk PO, Wunderlich K, Thiel HJ. Proliferative response of cultured human Tenon’s capsule fibroblasts to platelet-derived growth factor isoforms. Graefes Arch Clin Exp Ophthalmol 1997;235:667–671
  • Jester JV, Huang J, Petroll WM, Cavanagh HD. TGFbeta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGFbeta, PDGF and integrin signaling. Exp Eye Res 2002;75:645–657
  • Wang XY, Crowston JG, Zoellner H, Healey PR. Interferon alpha and interferon gamma sensitize human tenon fibroblasts to mitomycin-C. Invest Ophthalmol Vis Sci 2007;48:3655–3661
  • Yamamoto T, Varani J, Soong H. Effects of 5-fluorouracil and mitomycin C on cultured rabbit subconjunctival fibroblasts. Ophthalmology 1990;97:1204–1210
  • Yodaiken RE, Bennett D. Osha work-practice guidelines for personnel dealing with cytotoxic (antineoplastic) drugs. Am J Hosp Pharm 1986;43:1193–1204
  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM, et al. mTOR inhibition reverses Akt dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 2004;10:594–601
  • Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest 1996;98:2277–2283
  • Nguyen QD, Ibrahim MA, Watters A, Bittencourt M, Yohannan J, Sepah YJ, et al. Ocular tolerability and efficacy of intravitreal and subconjunctival injections of sirolimus in patients with noninfectious uveitis: primary 6-month results of the SAVE Study. J Ophthalmic Inflamm Infect 2013;3:32. doi: 10.1186/1869-5760-3-32
  • Shin YJ, Hyon JY, Choi WS, Yi K, Chung ES, Chung TY, et al. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation. Invest Ophthalmol Vis Sci 2013;54:4452–4458
  • Wen R, Wang Z, Song Y, Zhao L, Liu Y, Laties AM, et al. Rapamycin inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:ARVO E-Abstract 3928
  • Dejneka NS, Kuroki AM, Fosnot J, Tang W, Tolentino MJ, Bennett J. Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis 2004;10:964–972
  • Kleinman DM, Kim DD, Nivaggioli T, Kanetaka T, Gerritsen ME, Weber DA, et al. Sirolimus inhibits VEGF-induced microvascular hyperpermeability. Invest Ophthalmol Vis Sci 2007;48:ARVO E-Abstract 1422
  • Krishnadev N, Forooghian F, Cukras C, Wong W, Saligan L, Chew EY, et al. Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 2011;249:1627–1633
  • Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25:884–896
  • Roskoski R Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 2007;356:323–328
  • Papaetis GS, Syrigos KN. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. Bio Drugs 2009;23:377–389
  • Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, Fernández-Sánchez L, Cuenca-Navarro N. [Vascular morphological and microdensity changes of corneal neovascularization induced by topical bevacizumab and sunitinib in an animal model]. Arch Soc Esp Oftalmol 2013;88:473–481

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.