291
Views
13
CrossRef citations to date
0
Altmetric
Retina

Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells

, &
Pages 1245-1254 | Received 12 May 2015, Accepted 10 Sep 2015, Published online: 05 Jan 2016

References

  • Campochiaro PA. Ocular neovascularization. J Mol Med (Berl) 2013;91(3):311–321.
  • Zhuang W, Li H, et al. Association of specific genetic polymorphisms with age-related macular degeneration in a Northern Chinese population. Ophthalmic Genet 2014;35(3):156–161.
  • Scholl S, Kirchhof J, Augustin AJ. Role of inflammation in the pathogenesis of age-related macular degeneration. Exp Rev Ophthalmol 2009;4(6):617–625.
  • Horie-Inoue K, Inoue S. Genomic aspects of age-related macular degeneration. Biochem Biophys Res Commun 2014;452(2):263–275.
  • Blasiak J, Salminen A, Kaarniranta K. Potential of epigenetic mechanisms in AMD pathology. Front Biosci (Schol Ed) 2013;5:412–425.
  • He S, Li X, Chan N, Hinton DR. Review: Epigenetic mechanisms in ocular disease. Mol Vis 2013;19:665–674.
  • Chen LJ, Chen LJ. Age-related macular degeneration: From genetics to epigenetics. Asia Pac J Ophthalmol (Phila) 2013;2(4):211–212.
  • Suuronen T, Nuutinen T, et al. A Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun 2007;357(2):397–401.
  • Wei L, Liu B, Tuo J, et al. Hypomethylation of the IL17R promoter associates with age-related macular degeneration. Cell Rep 2012;2(5):1151–1158.
  • Kinnunen K, Ylä-Herttuala S. Vascular endothelial growth factors in retinal and choroidal neovascular diseases. Ann Med 2012;44(1):1–17.
  • Ponnaluri VK, Vadlapatla RK, et al. Hypoxia induced expression of histone lysine demethylases: implications in oxygen-dependent retinal neovascular diseases. Biochem Biophys Res Commun 2011;415(2):373–377.
  • Sheridan CM, Pate S, et al. Expression of hypoxia-inducible factorα-1α and 2α in human choroidal neovascular membranes. Graefes Arch Clin Exp Ophthalmol 2009;247(10):1361–1367.
  • Zhao W, Wang Y-S, et al. Inhibition of proliferation, migration and tube formation of choroidal microvascular endothelial cells by targeting HIF-1α with short hairpin RNA-expressing plasmid DNA in human RPE cells in a coculture system. Graefes Arch Clin Exp Ophthalmol 2008;246(10):1413–1422.
  • Kvanta A. Ocular angiogenesis: the role of growth factors. Acta Ophthalmol Scand 2006;84(3):282–288.
  • Forooghian F, Razavi R, Timms L. Hypoxia-inducible factor expression in human RPE cells. Br J Ophthalmol 2007;91(10):1406–1410.
  • Harned J, Nagar S, McGahan MC. Hypoxia controls iron metabolism and glutamate secretion in retinal pigmented epithelial cells. Biochem Biophys Res Commun 2014;1840(10):3138–3144.
  • Zhang Y-B, Wang X, et al. The effects of CoCl2 on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int J Mol Sci 2014;15(6):10999–11012.
  • Zhang B, Cobalt chloride inhibits tumor formation in osteosarcoma cells through upregulation of HIF-1α. Oncol Lett 2012;5:911–916, 2013.
  • Yang J, Ledaki I, Turley H, et al. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann N Y Acad Sci 2009;1177(1):185–197.
  • Asby DJ, Cuda F, et al. HIF-1 promotes the expression of its α-subunit via an epigenetically regulated transactivation loop. Mol Biosyst 2014;10(10):2505–2508.
  • Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (Review). Int J Mol Med 2015;35(4):859–869.
  • Luo W, Chang R, et al. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci USA 2012;109(49):E3367–E3376.
  • Pollard P, Loenarz C, et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 2008;416:387–394.
  • Rawuszko-Wieczorek AA, et al. Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res 2014;12(8):1112–1127.
  • Tarantini L, Bonzini M, et al. Effects of particulate matter on genomic DNA methylation content and inos promoter methylation. Environ Health Perspect 2009;117(2):217–222.
  • Kwa FAA, Thrimawithana TR. Epigenetic modifications as potential therapeutic targets in age-related macular degeneration and diabetic retinopathy. Drug Discov Today 2014;19(9):1387–1393.
  • Mariani CJ, Vasanthakumar A, et al. TET1-mediated hydroxymethylation facilitates hypoxic gene induction in neuroblastoma. Cell Rep 2014; 12;7(5):1343–1352.
  • Liu Q, Liu L, Zhao Y, et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-α and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 2011;10(6):1113–1123.
  • Shahrzad S, Bertrand K, Minhas K, Coomber B. Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007;2(2):119–125.
  • Yuen RKC, Chen B, et al. Hypoxia alters the epigenetic profile in cultured human placental trophoblasts. Epigenetics 2013;8(2):192–202.
  • Chen Y, Zhong M, et al. Interleukin-17 induces angiogenesis in human choroidal endothelial cells in vitro. Invest Ophthalmol Vis Sci 2014;16;55(10):6968–6975.
  • Oliver VF, Franchina M, Jaffe AE, et al. Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration. Cell Rep. 2013;5(6):1527–1535.
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Ann Rev Immunol 2009;27:485–517.
  • Ho AW, Gaffen SL. IL-17RC: a partner in IL-17 signaling and beyond. Semin Immunopathol 2010;32(1):33–42.
  • Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR. A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc. 2009;4(5):662–673.
  • Akrami H, Soheili Z-S, Khalooghi K, Ahmadieh H, et al. Retinal pigment epithelium culture; a potential source of retinal stem cells. Ophthalmic Vis Res 2009;4(3):134.
  • Lopez-Sánchez LM, Jimenez C, et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS One 2014;6;9(6):e99143.
  • Wang Y, Tang Z, et al. Differential response to CoCl2-stimulated hypoxia on HIF-1α, VEGF, and MMP-2 expression in ligament cells. Mol Cell Biochem 2012;360(1–2):235–242.
  • Oh J-H, Oh J, Togloom A, Kim S-W, Huh K. Effects of ginkgo biloba extract on cultured human retinal pigment epithelial cells under chemical hypoxia. Curr Eye Res 2013;38(10):1072–1082.
  • Liu B, Faia L, Hu M, Nussenblatt RB. Pro-angiogenic effect of IFNgamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells. Mol Vis 2010;10;16:184–193.
  • Alemi M, Sabouni F, Sanjarian F, Haghbeen K, Ansari S. Anti-inflammatory effect of seeds and callus of Nigella sativa L. extracts on mix glial cells with regard to their thymoquinone content. AAPS PharmSciTech 2013;14(1):160–167.
  • Zare M, Jazii FR, Soheili ZS, Moghanibashi MM. Downregulation of tropomyosin†1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation. Mol Carcinog 2012;51(10):796–806.
  • Davari M, Soheili Z-S, Ahmadieh H, et al. Amniotic fluid promotes the appearance of neural retinal progenitors and neurons in human RPE cell cultures. Mol Vis 2013;17;19:2330–2342.
  • Nakajima T, Nakajima E, Shearer TR, Azuma M. Concerted inhibition of HIF-1α and-2α expression markedly suppresses angiogenesis in cultured RPE cells. Mol Cell Biochem 2013; 383(1–2):113–122.
  • Lutty G, Grunwald J, Majji AB, Uyama M, Yoneya S. Changes in choriocapillaris and retinal pigment epithelium in age-related macular degeneration. Mol Vis 1999;5(35):35.
  • Fujihara M, Nagai N, Sussan TE, Biswal S, Handa JT. Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 2008;3(9):e3119.
  • Espinosa-Heidmann DG, Suner IJ, et al. Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD. Invest Ophthalmol Vis Sci 2006;47(2):729–737.
  • Baird PN, Robman LD, et al. Gene-environment interaction in progression of AMD: the CFH gene, smoking and exposure to chronic infection. Hum Mol Genet 2008;1;17(9):1299–305.
  • Seddon JM, Reynolds R, Shah HR, Rosner B. Smoking, dietary betaine, methionine, and vitamin D in monozygotic twins with discordant macular degeneration: epigenetic implications. Ophthalmology 2011;118(7):1386–1394.
  • Ristau T, Ersoy L, Hahn M, den Hollander AI, et al. Nongenetic risk factors for neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 2014;55(8):5228–5232.
  • Hughes AE, Orr N, et al. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet 2006;38(10):1173–1177.
  • Scholl HPN, Fleckenstein M, et al. CFH, C3 and ARMS2 are significant risk loci for susceptibility but not for disease progression of geographic atrophy due to AMD. PLoS One 2009;4(10):e7418.
  • Cvekl A, Duncan MK. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 2007;26(6): 555–597.
  • Otteson DC. Eyes on DNA methylation: current evidence for DNA methylation in ocular development and disease. J Ocul Biol Dis Infor 2011;4(3):95–103.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:245–254.
  • Hunter A, Spechler P, Cwanger A, et al. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci .2012;11–8449.
  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994;331(22):1480–1487.
  • Adamis AP, Aiello LP, D’Amato RA. Angiogenesis and ophthalmic disease. Angiogenesis 1999;3(1):9–14.
  • Kurihara T, Westenskow PD, Friedlander M. Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol 2014;275–281.
  • Tong J-P, Yao Y-F. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem 2006;39(3):267–276.
  • Comito G, Calvani M, Giannoni E, et al. HIF-1α stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 2011;51(4):893–904.
  • Oh J-M, Moon E-Y. Actin-sequestering protein, thymosin beta-4, induces paclitaxel resistance through ROS/HIF-1α stabilization in HeLa human cervical tumor cells. Life Sci 2010;87(9):286–293.
  • Jing Y, Liu L-Z, Jiang Y, et al. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 2012;125(1):10–19.
  • Ozawa Y. Oxidative stress in the RPE and its contribution to AMD pathogenesis: Implication of light exposure. Neuroprot Neuroregener Retinal Dis(Book) 2014;239–253.
  • Matsuda S, Gomi F, et al. Induction of connective tissue growth factor in retinal pigment epithelium cells by oxidative stress. Jpn J Ophthalmol 2006;50(3):229–234.
  • Shweta, Mishra KP, et al. A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure. Biometals 2015;28:175–185.
  • Park, H, Lee DS, Yim MJ, et al. 3,3’-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. J Mol Med (Berl) 2015;36(1):301–308.
  • Camelo S. Potential sources and roles of adaptive immunity in age-related macular degeneration: shall we rename AMD into autoimmune macular disease? Autoimmune Dis 2014;532487:11.
  • Takahashi H, Numasaki M, Lotze MT, Sasaki H. Interleukin-17 enhances bFGF-, HGF-and VEGF-induced growth of vascular endothelial cells. Immunol Lett 2005;98(2):189–193.
  • Wu W, Jin M, Wang Y, Liu B, Shen D, Chen P, et al. Overexpression of IL-17RC associated with ocular sarcoidosis. J Transl Med 2014;12(1):152.
  • Zhao Z, Xu P, Jie Z, Zuo Y, Yu B, Soong L, et al. γδ T cells as a major source of IL-17 production during age-dependent RPE degeneration. Invest Ophthalmol Vis Sci 2014;55(10):6580–6589.
  • Chen L, Qiu J-H, Zhang LL, Luo XD. Adrenomedullin promotes human endothelial cell proliferation via HIF-1α. Mol Cell Biochem 2012; 365(1–2): 263–273.
  • Pickens SR, Volin MV, Mandelin A, et al. IL-17 contributes to angiogenesis in rheumatoid arthritis. J Immunol 2010;184(6):3233–3241.
  • Xiong L, Wang F, Huang X, et al. DNA demethylation regulates the expression of miR†210 in neural progenitor cells subjected to hypoxia. FEBS J 2012;279(23):4318–4326.
  • Fournier, Alexandra, et al. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics. 2012;11(3):251–264.
  • Tsai Y-P, Chen H-F, Chen S-Y, et al. TET1 regulates hypoxia-induced epithelial-mesenchymal transition by acting as a co-activator. Genome Biol 2014;15(12):513.
  • Lachance G, Uniacke J, Audas TE, et al. DNMT3a epigenetic program regulates the HIF-2α oxygen-sensing pathway and the cellular response to hypoxia. Proc Natl Acad Sci USA. 2014;111(21):7783–7788.
  • Yan B, Yao J, Tao ZF, Jiang Q. Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 2014;229(7):825–833.
  • Iwase T, Fu J, Yoshida T, et al. Sustained delivery of a HIF-1 antagonist for ocular neovascularization. J Control Release 2013;172(3):625–633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.