18
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Glutathione reductase in human lens epithelium: FAD-induced in vitro activation

, , , &
Pages 1249-1256 | Received 27 Jul 1987, Accepted 18 Sep 1987, Published online: 02 Jul 2009

References

  • Reddy V. N., Giblin F. J. Metabolism and function of glutathione in the lens. “Human Cataract Formation”, Ciba Foundation Symposium 106. Pitman, London 1984; 65–87
  • Cheng H-M, Chylack L. T., Jr. Lens metabolism. “The Ocular Lens, Structure, Function and Pathology”, H. Maisel. Marcel Dekker, New York 1985; 223–264
  • Karkela A., Miettinen P. On the changes in the activity of glutathione reductase on the maturation of senile cataract. Acta. Ophthalmologica 1961; 39: 411–415
  • Friedburg D., Manthey K. F. Glutathione and NADP linked enzymes in human senile cataract. Exp. Eye Res 1973; 15: 173–177
  • Srivastava S. K., Villacorte D., Arya D. V. Distribution of glutathione reductase in lens epithelium, cortex and nucleus in various species and in human cataractous lenses. Exp. Eye Res 1973; 16: 519–521
  • Rogers K. M., Augusteyn R. C. Glutathione reductase in normal and cataractous human lenses. Exp. Eye Res 1978; 27: 719–721
  • Rao G. N., Sadasivudu B., Cotlier E. Studies on glutathione S-transferase, glutathione peroxidase and glutathione reductase in human normal and cataractous lens. Ophthalmic Res 1983; 15: 173–179
  • Ohrloff C., Hockwin O., Olson R., Dickman S. Glutathione peroxidase, glutathione reductase and superoxide dismutase in the aging lens. Curr. Eye Res 1984; 3: 109–115
  • Harding J. J., Crabbe J. C. The lens: Development, proteins, metabolism and cataract. “The Eye”, Vol. IB, H. Davson. Academic Press, Orlando 1984; 352–353
  • Horwitz J., Neuhaus R., Dockstader J. Analysis of microdissected cataractous human lenses. Invest. Ophthalmol. Vis. Sci 1980; 21: 616–619
  • Horwitz J., Hansen J. S., Cheung C-C., Ding L-L., Straatsma B. R., Lightfoot D. O., Takemoto L. J. Presence of low molecular weight polypeptides in human brunescent cataracts. Biochem. Biophys. Res. Comm 1983; 223: 65–71
  • Takemoto L. J., Hansen J. S., Horwitz J. Biochemical analysis of microdissected sections from the normal and cataractous human lens. Curr. Eye Res 1983; 2: 443–450
  • Straatsma B. R., Horwitz J., Takemoto L. J., Lightfoot D. O., Ding L-L. Clinicobiochemical correlations in aging-related human cataract. Am. J. Ophthalmol 1984; 97: 457–469
  • McFall-Ngai M. J., Ding L-L., Takemoto L. J., Horwitz J. Spatial and temporal mapping of the age-related changes in human lens crystallins. Exp. Eye Res 1985; 41: 745–758
  • Dovrat A., Straatsma B. R., Revilla P., Lightfoot D. O., Horwitz J. Analysis of five key enzymes in freshly excised human lens epithelium. Invest. Ophthalmol. Vis. Sci 1987; 28: 384, (Suppl.)
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 1976; 72: 248–254
  • Chylack L. T., Bettelheim F. A., Tung W. H. Studies on human cataracts I. Evaluation of techniques of human cataract preservation after extraction. Invest. Ophthalmol. Vis. Sci 1981; 20: 327–333
  • Paterson C. A., Delamere N. A., Mawhorter L., Cuizon J. V. Na, K-ATPase in simulated eye bank and cryoextracted rabbit lenses, and human eye bank lenses and cataracts. Invest. Ophthalmol. Vis. Sci 1983; 24: 1534–1538
  • Glatzle D., Korner W. F., Christeller S., Wiss O. Method for the detection of a biochemical riboflavin deficiency stimulation of NADPH-dependent glutathione reductase from human erythrocytes by FAD in vitro. In vestigations on the Vitamin B2 status in healthy people and geriatric patients. Internal.”. J. Vit. Res 1970; 40: 166–183
  • Williams C. H., Jr. “The Enzymes”, 3rd ed, Vol. 13, P. O. Boyer. Academic Press, New York 1976; 89–172
  • Thieme R., Pai E. F., Schirmer R. H., Schulz G. E. Three-dimensional structure of glutathione-reductase at 2A resolution. J. Mol. Biol 1981; 152: 763–782
  • Pai E. F., Schulz G. E. The catalytic mechanism of glutathione reductase as derived from X-ray diffraction analyses of reaction intermediates. J. Biol. Chem 1983; 258: 1752–1757
  • Beutler E. Glutathione reductase: Stimulation in normal subjects by riboflavin supplementation. Science 1969; 165: 613–615
  • Ono S., Hirano H. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats. Curr. Eye Res 1984; 3: 663–665
  • Skalka H. W., Prchal J. T. Riboflavin deficiency and cataract formation. Metabol. Ped. Ophthalmol 1981; 5: 17–20
  • Skalka H. W., Prchal J. T. Cataracts and riboflavin deficiency. Am. J. Clin. Nutrit 1981; 34: 861–863
  • van Veelen A. W.C., Rijksen G., Vlug A. M.C., Staal G. E.J. Correlation between cataract and glutathione metabolism. Clinica Chimica Acta 1983; 131: 123–128
  • Jacques P. P., Hartz S. C., Chylack L. T., Jr., McGandy R. B., Sadowski J. A. Nutritional status in persons with and without senile cataract: Blood vitamin and mineral levels. J. Clin. Nutrit 1987, in press
  • Jusco W. J., Levy G. Absorption, protein binding, and elimination of riboflavin. “Riboflavin”, R. S. Rivlin. Plenum Press, New York 1975; 100–146
  • McCormick D. B. Metabolism of riboflavin. “Riboflavin”, R. S. Rivlin. Plenum Press, New York 1975; 153–189
  • Merrill A. H., Froehlich J. A., McCormick D. B. Isolation and identification of alternative riboflavin-binding proteins from human plasma. Biochemical Med 1981; 25: 198–206
  • Ono S., Hirano H., Sato Y. Formation of flavin adenine dinucleotide and flavin mononucleotide by lens homogenate. Exp. Eye Res 1982; 34: 297–301
  • Ono S., Hirano H. Riboflavin metabolism in the single lens of rat. Ophthalmic Res 1983; 15: 140–145
  • Fecondo J., Augusteyn R. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp. Eye Res 1983; 36: 15–23
  • Kuck J. F.R. Leucine metabolism by same-donor pairs of human lenses from eye bank eyes. Ophthalmic. Res 1982; 14: 450–458
  • Rathbun W. B., Bovis M. G. Activity of gluthathione peroxidase and glutathione reductase in the human lens related to age. Curr. Eye Res 1986; 5: 381–385
  • Yagi K., Ohishi N., Ohkawa H. Biomedical aspects of flavoproteins. “Flavin and Flavoproteins”, V. Massey, C. H. Williams. Elsevier North Holland, Amsterdam 1982; Vol. 21: 402–409
  • Rivlin R. S., Langdon R. G. Regulation of hepatic FAD levels by thyroid hormone. “Advances in Enzyme Regulation”, G. Weber. Pergamon Press, OxfordEngland 1966; Vol. 4: 44–58
  • Domjan G., Kokai K. The flavin adenine dinucleotide (FAD) content of the rat's liver in hypothyroid state and in the liver of hypothyroid animals after in vivo thyroxine treatment. Acta Biol. Hung 1966; 16: 237–241
  • Cimino J. A., Jhangiani S., Schwartz E., Cooperman J. M. Riboflavin metabolism in the hypothyroid human adult. Proc. Soc. Exp. Biol. Med 1987; 184: 151–153
  • Rivlin R. S. Hormonal regulation of riboflavin metabolism. “Riboflavin”, R. S. Rivlin. Plenum Press, New York 1975; 393–420
  • Reddi A. S. Riboflavin nutritional status and flavoprotein enzymes in streptozotocin-diabetic rats. Biochim. et Biophys. Acta 1986; 882: 71–76
  • Rivlin R. S., Pinto J., Huang Y-P., Pelliccione N. Regulation of flavin metabolism by thyroid hormones and psychotropic drugs. “Flavin and Flavoproteins”, V. Massay, C. H. Williams. Elsevier North Holland, Amsterdam 1982; Vol. 21: 417–421

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.