12
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Induction of stress proteins in cultured human RPE-derived cells

&
Pages 537-545 | Received 06 Jul 1988, Accepted 08 May 1989, Published online: 02 Jul 2009

References

  • Bok D., Young R. W. Phagocytic properties of the retinal pigment epithelium. The Retinal Pigment Epithelium, K. M. Zinn, M. F. Marmor. Harvard University Press, Cambridge 1979; 148–174
  • Hogan M. J., Wood I., Steinberg R. H. Phagocytosis by pigment epithelium of human retinal cones. Nature 1974; 252: 305–307
  • Bernstein P. S., Law W. C., Rando R. R. Isomerization of all-trans retinoids to 11-cis-retinoids in vitro. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 1849–1853
  • Campochiaro P. A., Jerdan J. A., Glaser B. M., Cardin A., Michels R. G. Vitreous aspirates from patients with proliferative vitreoretinopathy stimulate retinal pigment epithelial cell migration. Arch. Ophthalmol. 1985; 103: 1403–1405
  • Hogan M. J. Role of the retinal pigment epithelium in macular disease. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1972; 76: 64–80
  • La Vail M. M., Mullen R. J. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp. Eye Res. 1976; 23: 227–245
  • Kuwabara T. Photic and photo-thermal effects on the retinal pigment epithelium. The Retinal Pigment Epithelium, K. M. Zinn, M. F. Marmor. Harvard University Press, Cambridge 1979; 293–313
  • Rice-Evans C., Omorphos S. C., Baysal E. Sickle cell membranes and oxidative damage. Biochem. J. 1986; 237: 265–269
  • Martins R. N., Harper C. G., Stokes G. B., Masters C. L. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress. J. Neurochem. 1986; 46: 1042–1045
  • Perry T. L., Godin D. V., Hansen S. Parkinson's disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 1982; 33: 305–310
  • Fridovich I. Oxygen radicals, hydrogen peroxide, and oxygen toxicity. Free Radicals in Biology, W. A. Pryor. Academic Press, New York 1976; 239–277
  • Mead J. F. Free radical mechanisms of lipid damage and consequences for cellular membranes. Free Radicals in Biology, W. A. Pryor. Academic Press, New York 1976; Vol. I: 51–68
  • Gregory E. M., Fridovich I. Induction of superoxide dismutase by molecular oxygen. J. Bacteriol. 1973; 114: 543–548
  • Hassan H. M., Fridovich I. Regulation of the synthesis of catalase and peroxidase in Escherichia coli. J. Biol. Chem. 1978; 253: 6445–6450
  • Burdon R. H. Heat shock and the heat shock proteins. Biochem. J. 1986; 240: 313–324
  • Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986; 58: 1151–1191
  • Pelham H. Coming in from the cold. Nature 1988; 332: 776–777
  • Deshaies R. J., Koch B. D., Werner-Washburne M., Craig E. A., Schekman R. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 1988; 332: 800–805
  • Chirico W. J., Waters M. G., Blobel G. 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988; 332: 805–810
  • Riabowol K. T., Mizzen L. A., Welch W. J. Heat shock is lethal to fibroblasts micro injected with antibodies against hsp 70. Science 1988; 242: 433–436
  • Slater A., Cato A. C.B., Sillar G. M., Kioussis J., Burdon R. H. Synthesis and axonal transport of heat shock proteins. Eur. J. Biochem. 1981; 117: 341–346
  • Pfeffer B. A., Clark V. M., Flannery J. G., Bok D. Membrane receptors for retinol-binding protein in cultured human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 1986; 27: 1031–1040
  • O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975; 250: 4007–4021
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248–254
  • Kim K. S., Lee A. S. The effect of extracellular Ca+2 and temperature on the induction of the heat shock and glucose-regulated proteins in hamster fibroblasts. Biochem. Biophys. Res. Commun. 1986; 140: 881–887
  • Thomas G. P., Welch W. J., Mathews M. B., Feramisco J. R. Molecular and cellular effects of heat shock and related treatments of mammalian tissue culture cells. Cold Spring Harbor Symp. 1981; 46: 985–996
  • Li G. C. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J. Cell. Physiol. 1983; 115: 116–122
  • Tytell M., Barbe M. F. Synthesis and axonal transport of heat shock proteins. Axonal Transport, M. A. Bisby, R. S. Smith. Liss, New York 1987; 473–492
  • Barbe M. F., Tytell M., Gower D. J., Welch W. Hyperthermia protects against light damage in the rat retina. Science 1988; 241: 1817–1820
  • Thomas G. P., Mathews M. B. Alterations of transcription and translation in HeLa cells exposed to amino acid analogs. Mol. Cell. Biol. 1984; 4: 1063–1072
  • Van Bogelen R. A., Kelley P. M., Neidhardt F. C. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 1987; 169: 26–32
  • Spector M. P., Aliabadi Z., Gonzalez T., Foster J. W. Global control in Salmonella typhimurium: Two-dimensional eletrophoretic analysis of starvation-, anaerobiosis- and heat shock-inducible proteins. J. Bacteriol. 1986; 168: 420–424
  • Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Sahmonella typhimurium. Cell 1985; 41: 753–762
  • Morgan R. W., Christman M. F., Jacobson F. S., Storz G., Ames B. N. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 8059–8063
  • Courgeon A. M., Rollet E., Becker J., Maisonhaute C., Best-Belpomme M. Hydrogen peroxide (H2O2) induces actin and some heat-shock proteins in Drosophila cells. Eur. J. Biochem. 1988; 171: 163–170
  • Issels R. D., Bourier S., Boning B., Li G. C., Mak J. J., Wilmanns W. Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells. Cancer Res. 1987; 47: 2268–2274
  • Keyse S. M., Tyrrell R. M. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J. Biol. Chem. 1987; 262: 14821–14825
  • Spitz D. R., Dewey W. C., Li G. C. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J. Cell. Physiol. 1987; 131: 364–373
  • Polla B. S., Healy A. M., Wojno W. C., Krane S. M. Hormone 1 alpha, 25-dihydroxyvitamin D3 modulates heat shock response in monocytes. Am. J. Physiol. 1987; 252: C640–C649
  • Cajone F., Bernelli-Zazzeva A. Oxidative stress induces a subset of heat shock proteins in rat hepatocytes and MHlCl cells. Chem. Biol. Interact. 1988; 65: 235–246
  • Jenkins D. E., Schultz J. E., Matin A. Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J. Bacteriol. 1988; 170: 3910–3914
  • Kapoor M., Sveenivasan G. M. The heat shock response of NeurosDora crassa: Stress-induced thermotolerance in relation to peroxidase and superoxide dismutase levels. Biochem. Biophys. Res. Commun. 1988; 156: 1097–1102
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979; 59: 527–605
  • Russo A., Mitchell J. B., McPherson S. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br. J. Cancer 1984; 49: 753–758
  • Tso M. O.M., Woodford B. J., Lam K. W. Distribution of ascorbate in normal primate retina and after photic injury: A biochemical, morphological correlated study. Curr. Eye Res. 1984; 3: 181–191
  • Organisciak D. T., Wang H. M., Kou A. L. Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: Effect of intense light exposure. Curr. Eye Res. 1984; 3: 257–267
  • Clark B. D., Brown I. R. Induction of a heat shock protein in the isolated mammalian retina. Neurochem. Res. 1986; 11: 269–279
  • Clark B. D., Brown I. R. Protein synthesis in the mammalian retina following the intravenous administration of LSD. Brain Res. 1982; 247: 97–104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.