17
Views
33
CrossRef citations to date
0
Altmetric
Original Article

Evidence for the presence of phosphoinositide cycle and its involvement in cellular signal transduction in the rabbit lens

&
Pages 101-111 | Received 19 Aug 1988, Accepted 14 Nov 1988, Published online: 02 Jul 2009

References

  • Hokin M. R., Hokin L. E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. Biol. Chem. 1953; 203: 967–977
  • Berridge M‐J. Inositol Trisphosphate and diacyl glycerol‐two interacting second messengers. Ann. Rev. Biochem. 1987; 56: 159–193
  • Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 1975; 415: 81–147
  • Downes C. P., Michell R. H. Phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5 biphosphate: lipids in search of a function. Cell Calcium 1982; 3: 467–502
  • Berridge M. J. Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 1984; 220: 345–360
  • Berridge M. J., Irvine R. F. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–321
  • Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science 1984; 225: 1365–1370
  • Schulz I., Stolze H. H. The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Ann. Review Physiol. 1980; 42: 127–156
  • Hallam T. J., Sanchez A., Rink T. J. Stimulus‐response coupling in human platelets. Changes evoked by platelet‐activating factor in cytoplasmic free calcium monitored with the fluorescent calcium indicator quin2. Biochem. J. 1984; 218: 819–827
  • Brown R. D., Berger K. D., Taylor P. α1‐Adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line. J. Biol. Chem. 1984; 259: 7554–7562
  • Van Heyningen R. Meso‐inositol in the lens of mammalian eyes. Biochem. J. 1957; 65: 24–28
  • Kahasawa I., Lou M. F., Merola L. O., Kinoshita J. H. Inositol‐l‐phosphatase in the lens. Ophthal. Res. 1974; 6: 155–165
  • Varma S. D., Chakrapani B., Reddy V. N. Intraocular transport or myoinositol. II. Accumulation in the rabbit lens in vitro. Invest. Ophthalmol. 1970; 9: 794–800
  • Zelenka P. Phospholipid composition and metabolism in the embryonic chick lens. Exp. Eye Res. 1978; 26: 267–274
  • Zelenka P. Changes in phosphatidylinositol metabolism during differentiation of lens epithelial cells into lens fiber cells in the embryonic chick. J. Biol. Chem. 1980; 255: 1296–1300
  • Vu N. D., Chepko G., Zelenka P. S. Decreased turnover of phosphatidylinositol accompanies in vitro differentiation of embryonic chicken lens epithelial cells into lens fibers. Biochim. Biophys. Acta 1983; 750: 105–111
  • Zelenka P. S. Lens lipids. Curr. Eye Res. 1984; 3: 1337–1359
  • Das N. D., Yoshioka T., Samuelson D., Shichi H. Phosphotidylinositol‐4,5‐Bio‐phosphate (PIP2): Immunologicalization and distribution in the rat lens (abstract). Invest. Ophthalmol. Vis. Sci. (ARVO Suppl.) 1987; 28: 384
  • Keeting P. E., Lysz T. W., Centra M., Fu S. ‐C.J. Prostaglandin Biosynthesis in the Rat Lens. Invest. Ophthalmol. Vis. Sci. 1985; 26: 1083–1086
  • Bazan H. E. P., King W. D., Rossowska M. Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium. Curr. Eye Res. 1985; 4: 793–801
  • Rossowska M., King D., Bazan N. G., Bazan H. E. P. Polyphosphoinosital metabolism in the rabbit cornea. Invest. Ophthalmol. Vis. Sci 1985; 26: 182
  • Hokin-Neaverson, Mabel, Parries, Gregory S. Phosphatidylinositol synthase in mammalian pancreas. Inositol and Phosphoinositides, Metabolism and Regulation, J. E. Bleasdale, J. Eichberg, G. Hauser. The Humana Press, Inc. 1985; 107–122
  • Berridge M. J., Dawson R. M. C., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositolphosphates after agonist‐dependent hydrolysis of membrane phosphoinositides. Biochem. J. 1983; 212: 473–482
  • Harwood J. L., Hawthorne J. N. The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissues. Biochim. Biophys. Acta 1969; 171: 75–88
  • Tou J. S., Hurst M. W., Huggins C. G., Foor W. E. Biosynthesis of triphosphinoinositide in rat kidney cortex. Arch. Biochem, Biophys. 1970; 140: 492–502
  • Seyfred M. A., Wells W. A. Subcellular incorporation of 32P into phoosphoinositides and other phospholipids in isolated hepatocytes. J. Biol. Chem. 1984; 259: 7659–7665
  • Berridge M. J. Phosphatidylinositol hydrolysis: A multifunctional transducing system. Mol. Cell Endocrinol. 1981; 24: 115–140
  • Hokin L. E. Receptors and phosphoinositide‐generated second messengers. Ann. Rev. Biochem. 1985; 54: 205–35
  • Hokin-Neaverson, Sadeghian M. K. Lithium‐induced accumulation of inositol 1‐phosphate during cholecystokinin octapeptide‐and acetylcholine‐stimulated phosphatidyl inositol breakdown in dispersed mouse pancreas acinar cells. J. Biol. Chem. 1984; 259: 4346–52
  • Allison J. H., Stewart M. A. Reduced brain inositol in lithium‐treated rats. Nature New Biol. 1971; 233: 267–28
  • Michell B. Inositol phosphates. Profusion and confusion. Nature 1986; 319: 176–177
  • Irvine R. F., Moor R. M. Microinjection of inositol 1, 3, 4, 5‐tetra kisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem. J. 1986; 240: 917–920
  • Irvine R. F., Letcher A. J., Lander D. J., Berridge M. Specificity of inositol phosphate‐stimulated Ca2+ mobilization from Swiss‐mouse 3T3 cells. Biochem. J. 1986; 240: 301–304
  • deChaffay de Courcelles D., Leysen J. E., DeClerck F., Van Belle H., Janssen P. A. Evidence that phospholipid turnover is the signal transducing system coupled to Serotonin‐S2 receptor sites. J. Biol. Chem. 1985; 260: 7603–7608
  • Piatigorsky J., Rothschild S. Loss during development of the ability of chick embryonic lens cells to elongate in culture: Inverse relationship between cell division and elongation. Develop. Biol. 1972; 28: 382–389
  • Michell R. H. Inositol lipid metabolism in dividing and differentiating cells. Cell Calcium 1982; 3: 429–440
  • Redden J. R., Wilson‐Dziedic D. C. Insulin growth factor and epidermal growth factor trigger mitosis in lens culture in a serum‐free medium. Invest. Ophthalmol. Vis. Sci. 1983; 24: 409–416
  • Harding C. V., Rothstein H., Newman M. B. The activation of DNA synthesis and cell division in rabbit lens in vitro. Exp. Eye Res. 1962; 1: 457–465
  • Piatigorsky J. Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Develop. Biol. 1973; 30: 214–216
  • Chamberlain C. G., McAvoy J. W. Evidence that fibroblast growth factor promotes lens fiber differentiation. Curr. Eye Res. 1987; 6: 1165–1168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.