11
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Comparison of uptake and incorporation of docosahexaenoic and arachidonic acids by frog retinas

&
Pages 851-860 | Received 07 Jun 1993, Accepted 10 Aug 1993, Published online: 02 Jul 2009

References

  • Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 1983; 22: 79–131
  • Dratz E. A., Deese A. J. The role of docosahexaenoic acid (22:6ω3) in biological membranes: examples from photoreceptors and model membrane bilayers. Health Effects of Polyunsaturated Fatty Acids in Seafoods, A. P. Simopoulos, R. R. Kifer, R. Martin. Academic Press, New York 1986; 319–351
  • Wiedmann T. S., Pates R. D., Beach J. M., Salmon A., Brown M. F. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 1988; 27: 6469–6474
  • Dratz E. A., Holte L. L. The molecular spring model for the function of docosahexaenoic acid (22:6ω3) in biological membranes. Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress, A. Sinclair, R. Gibson. American Oil Chemists' Society, Illinois 1992; 122–127
  • Brown M. F., Gibson N. J. Biological function of docosahexaenoic acid in the retinal rod disc membrane. Essential Fatty Acids and Eicosanoids: Invited Papers from the Third International Congress, A. Sinclair, R. Gibson. American Oil Chemists' Society, Illinois 1992; 134–138
  • Benolken R. M., Anderson R. E., Wheeler T. G. Membrane fatty acids associated with the electrical response in visua! excitation. Science 1973; 182: 1253–1254
  • Wheeler T. G., Benolken R. M., Anderson R. E. Visual membrane: specificity of fatty acid precursors for the electrical response to illumination. Science 1975; 188: 1312–1314
  • Neuringer M., Connor W. E., Van Patten C., Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 1984; 73: 272–276
  • Neuringer M., Connor W. E., Tin D. S., Barstad L., Luck S. Biochemical and functional effects of prenatal and postnatal n-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 4021–4025
  • Neuringer M., Anderson G. J., Connor W. E. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Ann. Rev. Nutr. 1988; 8: 517–541
  • Bourre J.-M., Francois M., Youyou A., Dumont O., Piciotti M., Pascal G., Durand G. The effects of dietary α-linofenic acid on the composition of nerve membrane, enzymatic activity, amplitude of electro-physiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 1989; 119: 1880–1890
  • Uauy R. D., Birch D. G., Birch E. E., Tyson J. E., Hoffman D. R. Effect of dietary omega-3 fatty acids on retinal function of very-low-weight neonates. Pediatr. Res. 1990; 28: 485–492
  • Birch D. G., Birch E. E., Hoffman D. R., Uauy R. D. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest. Ophthalmol. Vis. Sci. 1992; 33: 2365–2376
  • Birch E. E., Birch D. G., Hoffman D. R., Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest. Ophthalmol. Vis. Sci. 1992; 33: 3242–3253
  • Young R. W. The renewal of photoreceptor cell outer segments. J. Cell Biol. 1967; 33: 61–72
  • Young R. Visual cells and the concept of renewal. Invest. Ophthalmol. 1976; 15: 700–725
  • Chen H., Wiegand R. D., Koutz C. A., Anderson R. E. Docosahexaenoic acid increases in frog retinal pigment epithelium following rod photoreceptor shedding. Exp. Eye Res. 1992; 55: 93–100
  • Gordon W. C., Rodriguez de Turco E. B., Bazan N. G. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Curr. Eye Res. 1992; 11: 73–83
  • Anderson R. E., O'Brien P. J., Wiegand R. D., Koutz C. A., Stinson A. M. Conservation of docosahexaenoic acid in the retina. Neurobiology of Essential Fatty Acids, N. Bazan, M. Marfi, G. Tossano. Plenum Press, New York 1992; 285–294
  • Bazan N. G., Gordon W. C., Rodriguez de Turco E. B. Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigment epithelial cells-mediated recycling process. Neurobiology of Essential Fatty Acids, N. Bazan, M. Marfi, G. Tossano. Plenum Press, New York 1992; 295–306
  • Wiegand R. D., Koutz C. A., Stinson A. M., Anderson R. E. Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J. Neurochem. 1991; 57: 1690–1699
  • Wang N., Anderson R. E. Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr. Eye Res. 1992; 11: 783–791
  • Chen H., Anderson R. E. Lipids of frog retinal pigment epithelium: comparison with rod outer segments, retina, plasma and red blood cells. Curr. Eye Res. 1992; 11: 793–800
  • Chen H., Wiegand R. D., Anderson R. E. Decreased docosahexaenoic acid levels in retinal and pigment epithelium of frogs fed crickets. Exp. Eye Res. 1992; 54: 885–892
  • Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959; 37: 911–917
  • Rouser G., Fleisher S., Yarnarnoto A. Two dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 1970; 5: 494–497
  • Choe H. G., Anderson R. E. Unique molecular species composition of glycerolipids of frog rod outer segments. Exp. Eye Res. 1990; 51: 159–165
  • Chen H., Anderson R. E. Quantitation of phenacyl esters of retinal fatty acids by high-performance liquid chromatography. J. Chromatogr. 1992; 578: 124–129
  • Gordon W. C., Bazan N. G. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J. Neurochem. 1990; 10: 2190–2202
  • Stinson A. M., Wlegand R. D., Anderson R. E. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res. 1991; 32: 2009–2017
  • Li J., Wetzel M. G., O'Brien P. J. Transport of n-3 fatty acids from the intestine to the retina in rats. J. Lipid Res. 1992; 33: 539–548
  • Rodriguez de Turco E. B., Gordon W. C., Parkins N. E., Bazan N. G. Contribution of de novo and turnover pathways to the synthesis of DHA-lipids in frog retinal cells. Invest. Ophthalmol. Vis. Sci. 1992; 33: 1184, (Suppl.)
  • Chen H., Anderson R. E. Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acid derived from rod outer segments. Invest. Ophthalmol. Vis. Sci. 1993; 34: 867, (Suppl.)
  • Wetzel M. G., Li J., Alvarez R. A., Anderson R. E., Obrien P. J. Metabolism of linolenic acid and docosahexaenoic acid in rat retinas and rod outer segments. Exp. Eye Res. 1991; 53: 437–446
  • Wetzel M. G., Fahlman C., O'Brien P. J., Aguirre G. D. Metabolic labeling of rod outer segment phospholipids in miniature poodles with progressive rod-cone degeneration (prcd). Exp. Eye Res. 1990; 50: 89–97
  • Rotstein N. P., Aveldano M. I. Labeling of lipids of retina subcellular fractions by [l-14C]-eicosatetraenoate (20:4(n-6)) docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim. Biophys. Acta 1987; 921: 221–234
  • Rotstein N. P., Aveldano M. I. Labeling of phosphatidylcholines of retina subcellular fractions by [l-14C]eicosatetraenoate (20:4(n-6)), docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim. Biophys. Acta 1987; 921: 235–244
  • Bazan H. E.P., Careaga M. M., Sprecher H., Bazan N. G. Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Biochim. Biophys. Acta 1982; 712: 123–128
  • Chen H., Anderson R. E. Metabolism in frog retinal pigment epithelium of docosahexaenoic and arachidonic acids derived from rod outer segment membranes. Exp. Eye Res. 1993, (in press)
  • Gordon W. C., Rodriguez de Turco E. B., Bazan N. G. Ultrastructural and light microscopy autoradiography of [3H]DHA-containing phagosomes in the RPE. Invest. Ophthalmol. Vis. Sci. 1992; 33: 1204, (Suppl.)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.