17
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Cataract incidence and analysis of lens crystallins in the water-, urea-and SDS-soluble fractions of Emory mice fed a diet restricted by 40% in calories

, , , , &
Pages 1081-1091 | Received 03 Jun 1993, Accepted 29 Oct 1993, Published online: 02 Jul 2009

References

  • Weindruch R., Walford R. L. Dietary restriction: effects on disease. “The Retardation of Aging and Disease by Dietary Restriction”, R. Weindruch, R. L. Walford. Charles C. Thomas, Springfield, IL 1988; 73–114
  • Efros R. B., Walford R. L., Weindruch R., Milcheltree C. Influences of dietary restriction on immunity to influenza in aged mice. J. Gerontol. 1991; 46(N.4)142–147
  • Bronson R. T., Lipman R. D. Reduction in rate of occurrence of age related lesions in dietary restricted laboratory mice. Growth Dev. Aging 1991; 55: 169–184
  • Walford R. L. The clinical promise of diet restriction. Geriatrics 1990; 45: 81–87
  • Meydani S. N., Lipman R., Blumberg J. B., Taylor A. Dietary energy restriction decreases ex vivo spleen prostaglandin E2 synthesis in Emory mouse. J. Nutr. 1990; 120: 112–115
  • Walford R. L., Harris S. B., Gunion M. W. The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc. Natl. Acad. Sci. USA 1992; 89: 11533–11537
  • Weindruch R., Walford R. L. Prospects for retarding human aging by dietary restriction. “The Retardation of Aging and Disease by Dietary Restriction”, R. Weindruch, R. L. Walford. Charles C. Thomas, Springfield, IL 1988; 295–336
  • Weindruch R., Walford R. L. Dietary restriction: effects on survivorship. “The Retardation of Aging and Disease by Dietary Restriction”, R. Weindruch, R. L. Walford. Charles C. Thomas, Springfield, IL 1988; 31–71
  • Taylor A., Zuliani A. M., Hopkins R. E., Dallal G. E., Treglia P., Kuck J. F.R., Kuck K. Moderatea caloric restriction delays cataract formation in the Emory mouse. FASEB J. 1989; 3: 1741–1746
  • Leveille P. J., Weindruch R., Walford R. L., Bok D., Horwitz J. Dietary restriction retards age-related loss of gamma crystallins in the mouse lens. Science 1984; 214: 1247–1250
  • Youngman L. D., Park J -Y.K., Ames B. Protein oxidation associated with aging is reduced by dietary restriction of proteins or calories. Proc. Natl. Acad. Sci. USA 1992; 89: 9112–9116
  • Berman E. R. Lens. “Biochemistry of the Eye”, C Blakemore. Perspectives in Vision Research Series, Plenum Press, New York 1991; 201–280
  • Bloemendal H. Lens proteins. Crit. Rev. Biochem. 1982; 17: 1–38
  • Harding J. The normal lens. “Cataract, Biochemistry, Epidemiology and Pharmacology”, J. Harding. Chapman & Hall, New York 1991; 1–9
  • Harding J. J., Crabbe M. J.C. The lens: development, proteins, metabolism and cataract. “The Eye”, H. Davson. Academic Press, Orlando, FL 1984; Vol. 1b: 207–492
  • Kuck J. F.R., Kuck K. D. The Emory mouse, an animal model for human senile cataract. Emory Univ. J. Med. 1988; 2: 106–110
  • Kuck J. F.R. Late onset hereditary cataract of the Emory mouse. A model for human senile cataract. Exp. Eye Res. 1990; 50: 659–664
  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248–254
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970; 227: 680–685
  • O'Farrel P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 1977; 12: 1133–1142
  • Takemoto L., Straatsma B., Horwitz J. Immunochemical characterization of the major low molecular weight polypeptide (10K) from human cataractous lenses. Exp. Eye Res. 1989; 48: 261–270
  • Garber A. T., Gold R. J.M. Comparative two-dimensional electrophoretic analysis of water soluble proteins from bovine and murine lenses. Exp. Eye Res. 1982; 35: 585–596
  • Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose paper. Proc. Natl. Acad. Sci. USA 1979; 76: 4350–4354
  • Mura C. V., Stollar B. D. Serological detection of homologies of H1° with H5 and H1 histones. J. Biol. Chem. 1981; 256: 9767–9769
  • Siezen R. J., Owen E. A. Physicochemical characterization of high-molecular-weight α-crystallin subpopulations from the calf lens nucleus. Biochim. Biophys. Acta 1983; 749: 227–237
  • Bloemendal H. The lens proteins. “Molecular and Cellular Biology of the Eye Lens”, H. Bloemendal. John Wiley & Sons, N. Y. 1981; 1–47
  • Clark R., Zigman S., Lerman S. Studies on the structural proteins of the human lens. Exp. Eye Res. 1969; 8: 172–182
  • Roy D., Spector A. Human insoluble lens protein I. Separation and partial characterization of polypeptides. Exp. Eye Res. 1978; 26: 429–443
  • Ringens P. J., Hoenders H. J., Bloemendal H. Effect of aging on the water-soluble and water-insoluble protein pattern in normal human lens. Exp. Eye Res. 1982; 34: 201–207
  • Kamei A. Characterization of water-insoluble proteins in normal and cataractous human lens. Jpn. J. Ophthalmol. 1990; 34: 216–224
  • Bours J. Species specificity of the crystallins and the albuminoid of the ageing lens. Comp. Biochem. Physiol. 1980; 65B: 215–222
  • Swamy M. S., Abraham E. C. Lens protein composition, glycation and high molecular weight aggregation in aging rats. Invest. Ophthalmol. Vis. Sci. 1987; 28: 1693–1701
  • Zigler J. S., Jr. Animal models for the study of maturity-onset and hereditary cataract. Exp. Eye Res. 1990; 50: 651–657
  • Garber A. T., Winkler C., Shinohara T., King C. R., Inana G., Piatigorsky J., Gold R. J.M. Selective loss of a family of gene transcripts in a hereditary murine cataract. Science 1985; 227: 74–77
  • Swamy M. S., Shymala M., Abraham J., Garver F. A., Abraham E. C. The fate of γL crystallins in rat lens during diabetic cataractogenesis as determined by a monoclonal antibody. Curr. Eye Res. 1989; 8: 989–996
  • Cenedella R. J., Augusteyn R. C. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract. Curr. Eye. Res. 1990; 9: 805–818
  • Piatigorsky J., Kador P. F., Kinoshita J. H. Differential synthesis and degradation of protein in the hereditary Philly mouse cataract. Exp. Eye Res. 1980; 30: 69–78
  • Piatigorsky J., Fukui H. N., Kinoshita J. H. Differential metabolism and leakage of protein in an inherited cataract and a normal lens cultured with ouabain. Nature 1978; 274: 558–562
  • Bours J., Hockwin O. Biochemistry of the aging rat lenses n. Isoelectric focusing of the water-soluble crystallins. Ophthalmic Res. 1983; 15: 234–239
  • Barron B. C., Kuck J. F.R., Kuck K. D. The Emory mouse cataract: changes in the β and γ-crystallins during aging and cataractogenesis as revealed by isoelectric focusing of the native soluble proteins. Curr. Eye Res. 1984; 3: 1365–1372
  • Russell P., Chambers C. Interaction of an altered β-crystallin with other proteins in the Philly mouse lens. Exp. Eye Res. 1990; 50: 683–687
  • David L. L., Dickey B. M., Shearer T. R. Origin of urea-soluble protein in the selenite cataract. Inv. Ophthalmol. Vis. Sci. 1987; 28: 1148–1156
  • Spector A., Chiesa R., Sredy J., Garner W. cAMP-dependent phosphorylation of bovine lens α-crystallin. Proc. Natl. Acad. Sci. USA 1985; 82: 4712–4716
  • Klemens R., Frohli E., Steiger R. H., Schafer R., Aoyama A. αB-crystallin is a small heat shock protein. Proc. Natl. Acad. Sci. USA 1991; 88: 3652–3656
  • Mach H., Trautman P. A., Thomson J. A., Lewis R. V., Middaugh C. R. Inhibition of α-crystallin aggregation by γ-crystallin. J. Biol. Chem. 1990; 265: 4844–4848

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.