37
Views
56
CrossRef citations to date
0
Altmetric
Original Article

Expression of wound healing and stress-related proteins in keratoconus corneas

, , , &
Pages 1124-1131 | Received 15 Mar 1996, Accepted 11 Jul 1996, Published online: 02 Jul 2009

References

  • Krachmer J. H, Feder R. S., Belin M. W. Ker-atoconus and related non-inflammatory corneal disorders. Surv. Ophthalmol. 1984; 28: 293–322
  • Bron A. J. Keratoconus. Cornea 1988; 7: 163–169
  • Sawaguchi S., Yue B. Y. J.T., Sugar J., Gilboy J. E. Lysosomal enzyme abnormalities in keratoconus. Arch. Ophthalmol. 1989; 107: 1507–1510
  • Sawaguchi S., Twining S. S, Yue B. Y. J.T., Wilson P. M, Sugar J., Chan S.-K. α 1-Proteinase inhibitor levels in keratoconus. Exp. Eye Res. 1990; 50: 549–554
  • Sawaguchi S., Twining S. S, Yue B. Y. J. T., Chang S. H. L., Zhou X., Loushin G., Sugar J., Feder R. S. α 2-Macroglobulin levels in normal human and keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 1994; 35: 4008–4014
  • Fini M. E, Yue B. Y. J. T., Sugar J. Collagenolytic/gelatinolytic metalloproteinases in normal human and keratoconus corneas. Curr. Eye Res. 1992; 9: 849–862
  • Brown D., Chwa M. M, Opbroek A., Kenney M. C. Keratoconus corneas: increased gelatinolytic activity appears after modification of inhibitors. Curr. Eye Res. 1993; 12: 571–581
  • Kao W. W. Y., Vergnes J. P, Ebert J., SundarRaj C. V, Brown S. I. Increased collagenase and gelat-inase activities in keratoconus. Biochem. Biophys. Res. Commun. 1982; 107: 929–936
  • Rehany U., Lahav M., Shoshan S. Collageno-lytic activity in keratoconus. Ann. Ophthalmol. 1982; 14: 751–754
  • Newsome D. A, Foidart F. M, Hassell J. R, Krachmer J. H, Rodrigues M. M., Katz S. E. Detection of specific collagen types in normal and keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 1981; 20: 738–750
  • Yue B. Y. J.T., Sugar J., Benveniste K. Heterogeneity in keratoconus: possible biochemical basis. Proc. Soc. Exp. Biol. Med. 1984; 175: 336–341
  • Nakayasu T., Tanaka M., Konomi H., Hayashi T. Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas. Ophthalmic Res. 1986; 18: 1–10
  • Zimmermann D. R, Fischer R. W, Winterhalter K. H, Witmer R., Vaughan L. Comparative studies of collagens in normal and keratoconus corneas. Exp. Eye Res. 1988; 46: 431–442
  • Critchfield J. W, Calandra A. J, Nesburn A. B., Kenney M. C. Keratoconus: I. Biochemical studies of normal and keratoconus corneas. Exp. Eye Res. 1988; 46: 953–963
  • Funderburgh J. H, Panjwani N., Conrad G. W., Baum J. Altered keratan sulfate epitopes in keratoconus. Invest. Ophthalmol. Vis. Sci. 1989; 30: 2278–2281
  • Sawaguchi S., Yue B. Y. J.T., Sugar J., Robin J. Proteoglycan molecules in keratoconus. Invest. Ophthalmol. Vis. Sci. 1992; 32: 1846–1853
  • Funderburgh J. L., Chandler J. W. Proteogly-cans of rabbit corneas with nonperforating wounds. Invest. Ophthalmol. Vis. Sci. 1989; 30: 435–442
  • Cintron C, Covington H. I., Kublin C. L. Morphologic analyses of proteoglycans in rabbit corneal scars. Invest. Ophthalmol. Vis. Sci. 1990; 31: 1789–1798
  • Ferrari S., Battini R., Kaczmarek L., Rittling S., Calabretta B., Kim de Riel J., Philiponis V., Wei J. F., Baserga R. Coding sequence and growth regulation of the human vimentin gene. Mol. Cell. Biol. 1986; 6: 3614–3620
  • Lilienbaum A., Paulin D. Activation of the human vimentin gene by the Tax human T-cell leukemia virus I. J. Biol. Chem. 1993; 268: 2180–2188
  • SundarRaj N., Rizzo J. D, Anderson S. C., Gesiotto J. P. Expression of vimentin by rabbit corneal epithelial cells during wound repair. Cell Tissue Res. 1992; 267: 347–356
  • Ishizaki M., Zhu G., Haseba T., Shafer S. S., Kao W. W.-Y. Expression of collagen I, smooth muscle α-actin, and vimentin during the healing of alkali-burned and lacerated corneas. Invest. Ophthalmol. Vis. Sci. 1993; 34: 3320–3328
  • Erickson H. P. Tenascin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. Annu. Rev. Cell Biol. 1989; 5: 71–92
  • Schalkwijk J., Steijlen P. M, van Vlijmen-Willems I. M. J.J., Oosterling B., Mackie E. J., Verstraeten A. A. Tenascin expression in human dermis is related to epidermal proliferation. Am. J. Pathol. 1991; 139: 1143–1150
  • Ocklind G., Talts J., Fassler R., Mattsson A., Ekblom P. Expression of tenascin in developing and adult mouse lymphoid organs. J. Histochem. Cytochem. 1993; 41: 1163–1169
  • Chiquet M. Tenascin: an extracellular matrix protein involved in morphogenesis of epithelial organs. Kidney Int. 1992; 41: 629–631
  • Tervo K., van Setten G.-B., Beuerman R. W, Virtanen I., Takkanen A., Tervo T. Expression of tenascin and cellular fibronectin in the rabbit cornea after anterior keratectomy. Invest. Ophthalmol. Vis. Sci. 1991; 32: 2912–2918
  • Gailit J., Clark R. A. F. Wound repair in the context of extracellular matrix. Curr. Opinion Cell Biol. 1994; 6: 717–725
  • Grant M. B, Khaw P. T, Schultz G. S, Adams J. L., Shimizu R. W. Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-β on corneal cell chemotaxis. Invest. Ophthalmol. Vis. Sci. 1992; 33: 3292–3301
  • Bennett N. T., Schultz G. S. Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am. J. Surg. 1993; 165: 728–737
  • Wilson S. E, Schultz G. S, Chegini N., Weng J., He Y. G. Epidermal growth factor, transforming growth factor alpha, transforming growth factor beta, acidic fibroblast growth factor, basic fibroblast growth factor, and interleukin-1 proteins in the cornea. Exp. Eye Res. 1994; 59: 63–71
  • Welch W. J. Mammalian stress response: cell physiology, structure/function of stress proteins and implications for medicine and disease. Physiol. Rev. 1992; 72: 1063–1081
  • Lindquist S., Craig E. A. The heat-shock proteins. Annu. Rev. Genet. 1988; 22: 631–677
  • Jacquier-Sarlinm M. R, Jornot L., Polla B. S. Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J. Biol. Chem. 1995; 270: 14094–14099
  • Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 1992; 61: 761–807
  • Ciechanover A., Schwartz A. L. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 1994; 8: 182–191
  • Medina R., Wing S. S, Haas A., Goldberg A. L. Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy. Biomed. Biochim. Acta 1991; 50: 347–356
  • Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 1993; 27: 437–496
  • Haas A. L., Bright P. M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 1985; 260: 12464–12473
  • Zhang Y., Wick D. A, Haas A. L, Seetharam B., Dahms N. M. Regulation of lysosomal and ubiquitin degradative pathways in differentiating human intestinal Caco-2 cells. Biochim. Biophys. Acta 1995; 1267: 15–24
  • Ljubimov A. V, Burgeson R. E, Butkowski R. J, Couchman J. R, Wu R. R, Ninomiya Y., Sado Y, Maguen E., Nesburn A. B., Kenney M. C. Extracellular matrix alterations in human corneas with bullous keratopathy. Invest. Ophthalmol. Vis. Sci. 1996; 37: 997–1007
  • Ku P., D'Amore P. A. Regulation of basic fibroblast growth factor gene and protein expression following its release from sublethally injured endothelial cells. J. Cell. Biochem. 1995; 58: 328–343
  • de Boer W. I, Schuller A. G, Vermey M., van der Kwast T. H. Expression of growth factors and receptors during specific phases in regenerating urothelium after acute injury. in vivo. Am. J. Pathol. 1994; 145: 1199–1207
  • Fukuchi T., Zhou L., Twining S. S, Yue B., Sugar J. Expression of cathepsin G and α 1-proteinase inhibitor in keratoconus corneas. (Abstract). Invest. Ophthalmol. Vis. Sci. 1994; 35(Suppl.)1458
  • Girard M. T, Matsubara M., Fini M. E. Transforming growth factor-β and interleukin-1 modulate metal-loproteinase expression by corneal stromal cells. Invest. Ophthalmol. Vis. Sci. 1991; 32: 2441–2454
  • Nathan C., Sporn M. Cytokines in context. J. Cell Biol. 1991; 113: 981–986
  • Fabre E. J, Bureau J., Pouliquen Y., Lorans G. Binding sites for human interleukin-1 α, γ-interferon and tumor necrosis factor and its role on cultured fibroblasts of normal cornea and keratoconus. Curr. Eye Res. 1991; 7: 585–592
  • Maytin E. D. Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J. Invest. Dermatol. 1995; 104: 448–455
  • Jentsch S., Schlenker S. Selective proteins degradation: a journey's end within the proteasome. Cell 1995; 82: 881–884
  • Yamaguchi K., Barbe M. F, Brown I. R., Tytell M. Induction of stress (heat shock) protein 70 and its mRNA in rat corneal epithelium by hyperthermia. Curr. Eye Res. 1990; 9: 913–918
  • Krohn K., Laping N. J, Morgan T. E., Finch C. E. Expression of vimentin increases in the hippocampus and cerebral cortex after entorhinal cortex lesioning and in response to transforming growth factor-β1. J. Neuroim-munol. 1995; 56: 53–63
  • Carey I., Zehner Z. E. Regulation of chicken vimentin gene expression by serum, phorbol ester, and growth factors: identification of a novel fibroblast growth factor-inducible element. Cell Growth Differ. 1995; 6: 899–908
  • Linnala A., Kinnula V., Laitinen L. A, Lehto V. P., Virtanen I. Transforming growth factor-β regulates the expression of fibronectin and tenascin in BEAS 2B human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1995; 13: 578–585
  • Sakai T., Ohta M., Furukawa Y., Saga Y., Aizawa S., Kawakatsu H., Saito M. Tenascin-C induction by the diffusible factor epidermal growth factor in stromal-epithelial interactions. J. Cell. Physiol. 1995; 165: 18–29
  • D'Souza S. D, Antel J. P., Freedman M. S. Cytokine induction of heat shock protein expression in human oligodendrocytes: an interleukin-mediated mechanism. J. Neuroimmunol. 1994; 50: 17–24
  • Takenaka T. M., Hightower L. E. Regulation of chicken Hsp70 and Hsp90 family gene expression by transforming growth factor-β1. J. Cell. Physiol. 1993; 155: 54–62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.