8
Views
6
CrossRef citations to date
0
Altmetric
Original Article

An experimental model for the evaluation of lipid peroxidation in lens membranes

, , , &
Pages 395-402 | Received 11 Aug 1995, Accepted 13 Dec 1995, Published online: 02 Jul 2009

References

  • Dean R. T., Pollak J. K. Endogeneous free radical generation may influence protheolysis in mytochon-dria. Biochem. Biophys. Res. Commun. 1985; 126: 1082–1089
  • Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes Mellitus and ageing. Biochem. J. 1988; 256: 205–212
  • Spector A., Garner W. H. Hydrogen Peroxide and human cataract. Exp. Eye Res. 1981; 33: 673–681
  • Russell P., Garland D., Zigler J. J. Aging effects of vitamin C on a human lens protein produced in vitro. FMEB J. 1987; 1: 32–35
  • Mitchell J. B., Samuni A., Krishna M. C., deGraff W. G., Ahn M. S., Samuni U., Russo A. Biologically active metal-independent superoxide dismutase mimics. Biochemistry 1990; 29: 2802–2807
  • Spector A. The lens and oxidative stress. Oxida-tive Stress: Oxidants and Antioxidants, H. Sies. Academic Press, London 1991; 529–558
  • Halliwell B. Free radicals, human disease and the design of antioxidants. New Strategies in Prevention and Therapy: Cell and Tissue Protection in Ophthalmology, K. Schmidt. Hippokrates Verlag, Stuttgart 1995; 15–24
  • Kuypers F. A., van den Berg J. J. M., Schalkwijk C., Roelofsen B., Op den Kamp J. A. F. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim. Biophys. Acta 1987; 921: 266–274
  • van der Berg J. J. M. Effects of oxidants and antioxidants evaluated using parinaric acid as a sensitive probe for oxidative stress. Redox Report 1994; 1: 11–21
  • van der Berg J. J. M., Kuypers F. A., Qu J. H., Chiu D., Lubin B., Roelofsen B., Op den Kamp J. A. F. The use of cis-parinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes. Biochim. Biophys. Acta 1988; 944: 29–39
  • Gutteridge J. M. C. Ferrous salt promoted damage to deoxyribose and benzoate. Biochem. J. 1987; 243: 709–714
  • Bidlack W. R., Tappel A. L. Damage to micro–somal membrane by lipid peroxidation. Lipids 1973; 8: 177–182
  • Yu L. W., Latriano L., Duncan S., Hartwick R. A., Witz G. High-performance liquid chromatography analysis of thiobarbituric acid adducts of malondialdehyde and trans, trans-muconaldehyde. Anal. Biochem. 1986; 156: 326–330
  • Bartlett G. R. Phosphorous assay in column chromatography. J. Bid Chem. 1959; 234: 466–468
  • Peterson G. L. Review of the folin protein quanti–tation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biothem. 1979; 100: 201–215
  • Hunt J. V., Smith C. C. T., Wolff S. P. Autoxi-dative glycosyiation and Possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990; 39: 1420–1424
  • Wolff S. P., Dean R. T. Glucose autoxidation and protein modification: the potential role of autoxidative glycosylation in diabetes. Biochem. J. 1987; 245: 243–250
  • Matsuda H., Giblin F. J., Reddy V. N. The effect of X-irradiation on cation transport in rabbit lens. Exp. Eye Res. 1981; 33: 253–265
  • Pirie A. Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humor. Biochem. J. 1965; 96: 244–253
  • Bhuyan K. C., Bhuyan D. K., Podos S. M. Evidence of increased lipid peroxidation in cataracts. IRCS Med. Sci. 1981; 9: 126–127
  • Spector A., Roy D. Disulfide linked high molecular weight protein associated with human cataract. Proc. Natl. Acad. Sci. USA 1978; 75: 3244–3248
  • Takemoto L. J., Hansen J. S. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis. Invest. Ophthalmol. Vis. Sci. 1982; 22: 336–342
  • Giblin F. J., McCready J. P., Kodama T., Reddy V. N. A direct correlation between the levels of ascorbic acid and H2O2 in aqueous humor. Exp. Eye Res. 1984; 38: 87–93
  • Heath H. The distribution and possible functions of ascorbic acid in the eye. Exp. Eye Res. 1962; 1: 362–367
  • Lcrman S., Borkman R. Spectroscopic evaluation and classification of the normal, aging and cataractous lens. Ophthalmic Res. 1976; 8: 335–353
  • Bielski B. H. Chemistry of ascorbic acid radicals. Ascorbic Acid: Chemistry, Metabolism, and Uses, P. A. Seib, B. M. Tolbert. American Chemical Society, Washington, DC. 1982; 81–100
  • Buettner G. R., Jurkiewicz B. A. Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol. Med. 1993; 14: 49–55
  • Garland D., Zigler J. J., Kinoshita J. Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen. Arch. Biochem. Biophys. 1986; 251: 771–776
  • Harman D. Free radical theory of aging: effect of age on serum copper levels. J. Gerontol. 1965; 20: 151–153
  • Noto R., Alicata R., Sfogliano L., Neri S., Bifarella M. A study of cupremia in elderly diabetics. Acta Diabetol. Lat. 1983; 20: 81–85
  • Srivastava V. K., Varshney N., Pandey D. C. Role of trace elements in senile cataract. Acta Ophthalmol. Copenh. 1992; 70: 839–841
  • Nath R., Srivastava S. K., Singh K. Accumulation of copper and inhibition of lactate dehydrogenase activity in human senile cataractous lenses. Ind. J. Exp. Biol. 1969; 7: 25–26
  • Janero D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 1990; 9: 515–540
  • Garland D. Role of site-specific, metal-catalyzed oxidation in lens aging and cataract: a hypothesis. Exp. Eye Res. 1990; 50: 677–82
  • Gutteridge J. M. C., Wilkins S. Copper salt–dependent hydroxyl radical formation damage to proteins acting as antioxidants. Biochim. Biophys. Acta. 1983; 759: 38–41
  • Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solutions. J. Phy. Chem. Ref: Data 1988; 17: 513–886
  • Burkitt M. J., Gilbert B. C. Model studies of the iron catalysed Haber-Weiss cycle and the ascorbate driven Fenton reaction. Free Rad. Res Comm. 1990; 10: 265–280

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.