189
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Effects of Pulsed Electromagnetic Fields on the mRNA Expression of RANK and CAII in Ovariectomized Rat Osteoclast-Like Cell

, , , , &
Pages 1-7 | Received 31 Oct 2008, Accepted 13 Feb 2009, Published online: 12 Jan 2010

REFERENCES

  • Boyce, B.F., Hughes, D.E., Wright, K.R., Xing, L., and Dai, A. (1999). Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Lab Invest., 79, 83–94.
  • Alliston, T., and Derynck, R. (2002). Medicine: interfering with bone remodelling. Nature, 416, 686–687.
  • Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell, 2, 389–406.
  • Lee, Z.H., and Kim, H.H. (2003). Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun., 305, 211–214.
  • Anderson, D.M., Maraskovsky, E., Billingsley, W.L., Dougall, W.C., Tometsko, M.E., Roux, E.R., Teepe, M.C., DuBose, R.F., Cosman, D., and Galibert, L. (1997). A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 390, 175–179.
  • Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., and Taniguchi, T. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell, 3, 889–901.
  • Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H, and Choi, Y. (1999). TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell, 4, 1041–1049.
  • Mattsson, J.P., Skyman, C., Palokangas, H., Vaananen, K.H., and Keeling, D.J. (1997). Characterization and cellular distribution of the osteoclast ruffled membrane vacuolar H+-ATPase B-subunit using isoform-specific antibodies. J. Bone Miner. Res., 12, 753–760.
  • Huang, W.H., Lau, A.T., Daniels, L.L., Fujii, H., Seydel, U., Wood, D.J., Papadimitriou, J.M., and Zheng, M.H. (1998). Detection of estrogen receptor alpha, carbonic anhydrase II and tartrate-resistant acid phosphatase mRNAs in putative mononuclear osteoclast precursor cells of neonatal rats by fluorescence in situ hybridization. J. Mol. Endocrinol., 20, 211–219.
  • Salo, J., Lehenkari, P., Mulari, M., Metsikko, K., and Vaananen, H.K. (1997). Removal of osteoclast bone resorption products by transcytosis. Science, 276, 270–273.
  • Zelzer, E., and Olsen, B.R. (2003). The genetic basis for skeletal diseases. Nature, 423, 343–348.
  • Mostov, K., and Werb, Z. (1997). Journey across the osteoclast. Science, 276, 219–220.
  • Inoue, N., Ohnishi, I., Chen, D., Deitz, L.W., Schwardt, J.D., and Chao, E.Y. (2002). Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J. Orthop. Res., 20, 1106–1114.
  • Funk, R.H., and Monsees, T.K. (2006). Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs., 182, 59–78.
  • Repacholi, M.H., and Greenebaum, B. (1999). Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics, 20, 133–160.
  • Panagopoulos, D.J., Karabarbounis, A., and Margaritis, L.H. (2002). Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun., 298, 95–102.
  • Chang, K., Chang, W.H., Tsai, M.T., and Shih, C. (2006). Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect. Tiss. Res., 47, 222–228.
  • Zhuang, H., Wang, W., Seldes, R.M., Tahernia, A.D., Fan, H., and Brighton, C.T. (1997). Electrical stimulation induces the level of TGF-beta1 mRNA in osteoblastic cells by a mechanism involving calcium/calmodulin pathway. Biochem. Biophys. Res. Commun., 237, 225–229.
  • Blank, M., and Goodman, R. (2004). Initial interactions in electromagnetic field-induced biosynthesis. J. Cell Physiol., 199, 359–363.
  • Brighton, C.T., Wang, W., Seldes, R., Zhang, G., and Pollack, S.R. (2001). Signal transduction in electrically stimulated bone cells. J. Bone Joint. Surg. Am., 83-A, 1514–1523.
  • Khatib, L., Golan, D.E., and Cho, M. (2004). Physiologic electrical stimulation provokes intracellular calcium increase mediated by phospholipase C activation in human osteoblasts. FASEB J., 18, 1903–1905.
  • Lohmann, C.H., Schwartz, Z., Liu, Y., Guerkov, H., Dean, D.D., Simon, B., and Boyan, B.D. (2000). Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production. J. Orthop. Res., 18, 637–646.
  • Chang, K., Chang, W.H., Huang, S., Huang, S., and Shih, C. (2005). Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor. J. Orthop. Res., 23, 1308–1314.
  • Chambers, T.J., and Magnus, C.J. (1982). Calcitonin alters behaviour of isolated osteoclasts. J. Pathol., 136, 27–39.
  • Aung, H.T., Schroder, K., Himes, S.R., Brion, K., van Zuylen, W., Trieu, A., Suzuki, H., Hayashizaki, Y., Hume, D.A., Sweet, M.J., and Ravasi, T. (2006). LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J., 20, 1315–1327.
  • Bassett, C.A., Mitchell, S.N., and Gaston, S.R. (1981). Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J. Bone Joint. Surg. Am., 63, 511–523.
  • Garland, D.E., Moses, B., and Salyer, W. (1991). Long-term follow-up of fracture nonunions treated with PEMFs. Contemp. Orthop., 22, 295–302.
  • Gossling, H.R., Bernstein, R.A., and Abbott, J. (1992). Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields (PEMF). Orthopedics., 15, 711–719.
  • Sharrard, W.J., Sutcliffe, M.L., Robson, M.J., and Maceachern, A.G. (1982). The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J. Bone Joint Surg. Br., 64, 189–193.
  • Fini, M., Giavaresi, G., Giardino, R., Cavani, F., and Cadossi, R. (2006). Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation: an experimental study in rabbits. J. Bone Joint Surg. Br., 88, 123–128.
  • Luben, R.A., Cain, C.D., Chen, M.C., Rosen, D.M., and Adey, W.R. (1982). Effects of electromagnetic stimuli on bone and bone cells in vitro: inhibition of responses to parathyroid hormone by low-energy low-frequency fields. Proc. Natl. Acad. Sci. USA, 79, 4180–4184.
  • McLeod, K.J., Donahue, H.J., Levin, P.E., Fontaine, M.A., and Rubin, C.T. (1993). Electric fields modulate bone cell function in a density-dependent manner. J. Bone Miner. Res., 8, 977–984.
  • Chang, K., Hong-Shong Chang, W., Yu, Y.H., and Shih, C. (2004). Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production. Bioelectromagnetics, 25, 134–141.
  • Binderman, I., Somjen, D., Shimshoni, Z., Levy, J., Fischler, H., and Korenstein, R. (1985). Stimulation of skeletal-derived cell cultures by different electric field intensities is cell-specific. Biochim. Biophys. Acta, 844, 273–279.
  • Huang, L., Wang, W., Xiao, D., Yang, L., Lei, Z., and He, C. (2008). [Effect of pulsed electromagnetic fields of different treatment time on bone mineral density of femur in ovariectomized rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 22, 548–550.
  • Yang, Y.H., He, C.Q., Yang, L., Wang, W., and Lei, Z.J. (2008). [Effects of different intensity pulsed electromagnetic fields on serum estradiol of ovariectomized rats]. Sichuan Da Xue Xue Bao Yi Xue Ban, 39, 256–258.
  • Iotsova, V., Caamano, J., Loy, J., Yang, Y., Lewin, A., and Bravo, R. (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med., 3, 1285–1289.
  • Zhang, Q., Liang, X., Zhu, B., Dong, Q., Xu, L., Xia, L., Hu, J., Fu, J., and Liu, M. (2006). Effects of fluid shear stress on mRNA expression of carbonic anhydrase II in polarized rat osteoclasts. Cell. Biol. Int., 30, 714–720.
  • Fujisaki, K., Tanabe, N., Suzuki, N., Kawato, T., Takeichi, O., Tsuzukibashi, O., Makimura, M., Ito, K., and Maeno, M. (2007). Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci., 80, 1311–1318.
  • Chambers, T.J., Revell, P.A., Fuller, K., and Athanasou, N.A. (1984). Resorption of bone by isolated rabbit osteoclasts. J. Cell Sci., 66, 383–399.
  • Fenton, A.J., Martin, T.J., and Nicholson, G.C. (1993). Long-term culture of disaggregated rat osteoclasts: inhibition of bone resorption and reduction of osteoclast-like cell number by calcitonin and PTHrP[107–139]. J. Cell Physiol., 155, 1–7.
  • Rubin, C.T., McLeod, K.J., and Lanyon, L.E. (1989). Prevention of osteoporosis by pulsed electromagnetic fields. J. Bone Joint Surg. Am., 71, 411–417.
  • Tabrah, F., Hoffmeier, M., Gilbert, F., Jr., Batkin, S., and Bassett, C.A. (1990). Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (PEMFs). J Bone Miner. Res., 5, 437–442.
  • Zati, A., Gnudi, S., Mongiorgi, R., Giardino, R., Fini, M., Valdre, G., Galliani, I., and Montagnani, A.M. (1993). Effects of pulsed magnetic fields in the therapy of osteoporosis induced by ovariectomy in the rat. Boll. Soc. Ital. Biol. Sper., 69, 469–475.
  • Falany, M.L., Thames, A.M., 3rd., McDonald, J.M., Blair, H.C., McKenna, M.A., Moore, R.E., Young, M.K., and Williams, J.P. (2001). Osteoclasts secrete the chemotactic cytokine mim-1. Biochem. Biophys. Res. Commun., 281, 180–185.
  • Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu, O.K., Vologodskaia, M., Yim, M., Du, K., Singh, S., Pike, J.W., Darnay, B.G., Choi, Y., and Wu, H. (2002). Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 418, 443–447.
  • Rubin, J., Rubin, C., and Jacobs, C.R. (2006). Molecular pathways mediating mechanical signaling in bone. Gene, 367, 1–16.
  • Cossarizza, A., Angioni, S., Petraglia, F., Genazzani, A.R., Monti, D., Capri, M., Bersani, F., Cadossi, R., and Franceschi, C. (1993). Exposure to low frequency pulsed electromagnetic fields increases interleukin-1 and interleukin-6 production by human peripheral blood mononuclear cells. Exp. Cell Res., 204, 385–387.
  • Jonai, H., Villanueva, M.B., and Yasuda, A. (1996). Cytokine profile of human peripheral blood mononuclear cells exposed to 50 Hz EMF. Ind. Health, 34, 359–368.
  • Pessina, G.P., and Aldinucci, C. (1998). Pulsed electromagnetic fields enhance the induction of cytokines by peripheral blood mononuclear cells challenged with phytohemagglutinin. Bioelectromagnetics, 19, 445–451.
  • Khosla, S. (2001). Minireview: the OPG/RANKL/RANK system. Endocrinology, 142, 5050–5055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.