236
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Depth and Degeneration Dependences of Articular Cartilage Refractive Index Using Optical Coherence Tomography In Vitro

, , , &
Pages 36-47 | Received 23 Sep 2008, Accepted 10 Mar 2009, Published online: 12 Jan 2010

REFERENCES

  • Mow, V.C., Gu, W.Y., and Chen, F.H. (2005). Structure and function of articular cartilage and meniscus. In Basic Orthopaedic Biomechanics and Mechano-Biology (3rd edition), V. C. Mow and R. Huiskes ( eds.), pp. 181–258. Philadelphia, PA: Lippincott Williams & Wilkins.
  • Benedek, T.G. (2006). A history of the understanding of cartilage. Osteoarthr. Cartil., 14, 203–209.
  • Clark, J.M. (1990). The organization of collagen fibrils in the superficial zones of articular cartilage. J. Anat., 171, 117–130.
  • Mow, V.C., Ratcliffe, A. ( eds). (1991). Structure and Function of Articular Cartilage and Meniscus (Raven Press: New York).
  • Langsjo, T.K., Hyttinen, M., Pelttari, A., Kiraly, K., Arokoski, J., and Helminen, H.J. (1999). Electron microscopic stereological study of collagen fibrils in bovine articular cartilage: volume and surface densities are best obtained indirectly (from length densities and diameters) using isotropic uniform random sampling. J. Anat., 195, 281–293.
  • Patil, S.G., Zheng, Y.P., Wu, J.Y., and Shi, J. (2004). Measurement of depth-dependence and anisotropy of ultrasound speed of bovine articular cartilage in vitro. Ultrasound Med. Biol., 30, 953–963.
  • Armstrong, C.G., and Mow, V.C. (1982). Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg., 64, 88–94.
  • Bader, D.L., Kempson, G.E., Egan, J., Gilbey, W., and Barrett, A.J. (1992). The effects of selective matrix degradation on the short-term compressive properties of adult human articular cartilage. Biochim. Biophys. Acta, 1116, 147–154.
  • Kempson, G.E., Muir, H., Pollard, C., and Tuke, M. (1973). The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim. Biophys. Acta (BBA)–General Subjects, 297, 456–472.
  • Risbud, M.V., and Sittinger, M. (2002). Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol., 20, 351–356.
  • Schinagl, R.M., Gurskis, D., Chen, A.C., and Sah, R.L. (1997). Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res., 15, 499–506.
  • Chen, A.C., Bae, W.C., Schinagl, R.M., and Sah, R.L. (2001a). Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J. Biomech., 34, 1–12.
  • Chen, S.S., Falcovitz, Y.H., Schneiderman, R., Maroudas, A., and Sah, R.L. (2001b). Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthr. Cartil./Osteoarthr. Res. Soc., 9, 561–569.
  • Zheng, Y.P., Mak, A.F., Lau, K.P., and Qin, L. (2002). An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression. Physics Med. Biol., 47, 3165–3180.
  • Zheng, Y.P., Shi, J., Qin, L., Patil, S.G., Mow, V.C., and Zhou, K.Y. (2004). Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored using real-time ultrasound. Ultrasound Med. Biol., 30, 841–849.
  • Yelin, E., and Callahan, L.F. (1995). The economic cost and social and psychological impact of musculoskeletal conditions. National Arthritis Data Work Groups. Arthr. Rheum., 38, 1351–1362.
  • Forman, M.D., Malamet, R., and Kaplan, D. (1983). A survey of osteoarthritis of the knee in the elderly. J. Rheumatol., 10, 282–287.
  • Dashefsky, J.H. (1987). Arthroscopic measurement of chondromalacia of patella cartilage using a microminiature pressure transducer. Arthroscopy, 3, 80–85.
  • Peterfy, C.G. (2000). Scratching the surface: articular cartilage disorders in the knee. Magne. Reson. Imag. Clinics N. Am., 8, 409–430.
  • Burstein, D., and Gray, M. (2003). New MRI techniques for imaging cartilage. J. Bone Joint Surg.-Am., 85A, 70–77.
  • Rushfeldt, P.D., Mann, R.W., and Harris, W.H. (1981). Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum–I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness. J. Biomech., 14, 253–260.
  • Tepic, S., Macirowski, T., and Mann, R.W. (1983). Mechanical-properties of articular-cartilage elucidated by osmotic loading and ultrasound. Proc. Natl. Acad. Sci. USA–Biolog. Sci., 80, 3331–3333.
  • Modest, V.E., Murphy, M.C., and Mann, R.W. (1989). Optical verification of a technique for in situ ultrasonic measurement of articular-cartilage thickness. J. Biomechan., 22, 171–175.
  • Barthez, P.Y., Bais, R.J., and Vernooij, J.C.M. (2007). Effect of ultrasound beam angle on equine articular cartilage thickness measurement. Veterin. Radiol. Ultrasound, 48, 457–459.
  • Agemura, D.H., Obrien, W.D., Olerud, J.E., Chun, L.E., and Eyre, D.E. (1990). Ultrasonic propagation properties of articular-cartilage at 100 Mhz. J. Acoust. Soc. Am., 87, 1786–1791.
  • Myers, S.L., Dines, K., Brandt, D.A., Brandt, K.D., and Albrecht, M.E. (1995). Experimental assessment by high-frequency ultrasound of articular-cartilage thickness and osteoarthritic changes. J. Rheumatol., 22, 109–116.
  • Toyras, J., Laasanen, M.S., Saarakkala, S., Lammi, M.J., Rieppo, J., Kurkijarvi, J., Lappalainen, R., and Jurvelin, J.S. (2003). Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med. Biol., 29, 447–454.
  • Ling, H.Y., Zheng, Y.P., and Patil, S.G. (2007). Strain dependence of ultrasound speed in bovine articular cartilage under compression in vitro. Ultrasound Med. Biol., 33, 1599–1608.
  • Saied, A., Cherin, E., Gaucher, H., Laugier, P., Gillet, P., Floquet, J., Netter, P., and Berger, G. (1997). Assessment of articular cartilage and subchondral bone: subtle and progressive changes in experimental osteoarthritis using 50 MHz echography in vitro. J. Bone Min. Res., 12, 1378–1387.
  • Brown, C.P., Hughes, S.W., Crawford, R.W., and Oloyede, A. (2007). Ultrasound assessment of articular cartilage: analysis of the frequency profile of reflected signals from naturally and artificially degraded samples. Connect. Tis. Res., 6, 277–285.
  • Toyras, J., Rieppo, J., Nieminen, M.T., Helminen, H.J., and Jurvelin, J.S. (1999). Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound. Physics Med. Biol., 44, 2723–2733.
  • Adler, R.S., Dedrick, D.K., Laing, T.J., Chiang, E.H., Meyer, C.R., Bland, P.H., and Rubin, J.M. (1992). Quantitative assessment of cartilage surface-roughness in osteoarthritis using high-frequency ultrasound. Ultrasound Med. Biol., 18, 51–58.
  • Cherin, E., Saied, A., Laugier, P., Netter, P., and Berger, G. (1998). Evaluation of acoustical parameter sensitivity to age-related and osteoarthritic changes in articular cartilage using 50 MHz ultrasound. Ultrasound Med. Biol., 24, 341–354.
  • Laasanen, M.S., Toyras, J., Hirvonen, J., Saarakkala, S., Korhonen, R.K., Nieminen, M.T., Kiviranta, I., and Jurvelin, J.S. (2002). Novel mechano-acoustic technique and instrument for diagnosis of cartilage degeneration. Physiol. Measur., 23, 491–503.
  • Zheng, Y.P., Niu, H.J., Mak, F.T.A., and Huang, Y.P. (2005). Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression. J. Biomecham., 38, 1830–1837.
  • Zheng, Y.P., Ding, C.X., Bai, J., Mak, A.F.T., and Qin, L. (2001). Measurement of the layered compressive properties of trypsin-treated articular cartilage: an ultrasound investigation. Med. Biol. Eng. Comput., 39, 534–541.
  • Yasura, K., Mizuno, Y., Nakagawa, Y., Mori, K., Takenaka, M., Ohashi, T., Yamada, K., Kobayashi, M., Ando, K., Kuroki, H., Suzuki, T., Ikeuchi, K., Tsutsumi, S., and Nakamura, T. (2007). Estimation of the mechanical property of meniscus using ultrasound: examinations of native meniscus and effects of enzymatic digestion. J. Orthopaed. Res., 25, 884–893.
  • Kuroki, H., Nakagawa, Y., Mori, K., Kobayashi, M., Yasura, K., Okamoto, Y., Mizuno, Y., Ando, K., Ikeuchi, K., and Nakamura, T. (2006). Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich zone of cartilage. Osteoarthr. Cartil., 14, 784–792.
  • Kuroki, H., Nakagawa, Y., Mori, K., Ohba, M., Suzuki, T., Mizuno, Y., Ando, K., Takenaka, M., Ikeuchi, K., and Nakamura, T. (2004). Acoustic stiffness and change in plug cartilage over time after autologous osteochondral grafting: correlation between ultrasound signal intensity and histological score in a rabbit model. Arthr. Res. Ther., 6, R492–R504.
  • Kaleva, E., Saarakkala, S., Toyras, J., Nieminen, H.J., and Jurvelin, J.S. (2008). In-vitro comparison of time-domain, frequency-domain and wavelet ultrasound parameters in diagnostics of cartilage degeneration 2008. Ultrasound Med. Biol., 34, 155–159.
  • Zheng, Y.-P., Lu, M.-H., and Wang, Q. (2006). Ultrasound elastomicroscopy using water jet and osmosis loading: potentials for assessment for articular cartilage. Ultrasonics, 44, e203–e209.
  • Wang, Q., Zheng, Y.P., Leung, G., Lam, W.L., Guo, X., Lu, H.B., Qin, L., and Mak, A.F.T. (2008a). Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound. Physics Med. Biol., 53, 2537–2552.
  • Wang, Q., Zheng, Y.P., Qin, L., Huang, Q.H., Lam, W.L., Leung, G., Guo, X., and Lu, H.B. (2008b). Real-time ultrasonic assessment of progressive proteoglycan depletion in articular cartilage. Ultrasound Med. Biol., 34, 1085–1092.
  • Podoleanu, A.G. (2005). Optical coherence tomography. Br. J. Radiol., 78, 976–988.
  • Schmitt, J.M. (1999). Optical coherence tomography (OCT): a review. IEEE J. Select. Topics Quantum Electron., 5, 1205–1215.
  • Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A., and Fujimoto, J.G. (1991). Optical coherence tomography. Science, 254, 1178–1181.
  • Al-Ahalabi, S.A.C.B., and Davies, D.E.N. (1983). Partially coherent sources in interferometric sensors. In Proc. First Inter. Conf. Optical Fibre Sensors. London, 312–315.
  • Tearney, G.J., Brezinski, M.E., Bouma, B.E., Boppart, S.A., Pitris, C., Southern, J.F., and Fujimoto, J.G. (1997). In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276, 2037–2039.
  • Tomlins, P.H., and Wang, R.K. (2005). Theory, developments and applications of optical coherence tomography. J. Physics D-Appl. Physics, 38, 2519–2535.
  • Herrmann, J.M., Pitris, C., Bouma, B.E., Boppart, S.A., Jesser, C.A., Stamper, D.L., Fujimoto, J.G., and Brezinski, M.E. (1999). High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J. Rheumatol., 26, 627–625.
  • Drexler, W., Stamper, D., Jesser, C., Li, X.D., Pitris, C., Saunders, K., Martin, S., Lodge, M.B., Fujimoto, J.G., and Brezinski, M.E. (2001). Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis. J. Rheumatol., 28, 1311–1318.
  • Roberts, M.J., Adams, S.B., Patel, N.A., Stamper, D.L., Westmore, M.S., Martin, S.D., Fujimoto, J.G., and Brezinski, M.E. (2003). A new approach for assessing early osteoarthritis in the rat. Anal. Bioanal. Chem., 377, 1003–1006.
  • Karpie, J.C., and Chu, C.R. (2006). Imaging of articular cartilage. Opera. Techn. Orthopaed., 16, 279–285.
  • Xie, T.Q., Guo, S.G., Zhang, J., Chen, Z.P., and Peavy, G.M. (2006a). Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography. Lasers Surg. Med., 38, 852–865.
  • Xie, T.Q., Guo, S.G., Zhang, J., Chen, Z.P., and Peavy, G.M. (2006b). Use of polarization-sensitive optical coherence tomography to determine the directional polarization sensitivity of articular cartilage and meniscus. J. Biomed. Optics, 11, 05385RR.
  • Ugryumova, N., Attenburrow, D.P., Winlove, C.P., and Matcher, S.J. (2005). The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography. J. Physics D-Appl. Physics, 38, 2612–2619.
  • Patel, N.A., Zoeller, J., Stamper, D.L., Fujimoto, J.G., and Brezinski, M.E. (2005). Monitoring osteoarthritis in the rat model using optical coherence tomography. IEEE Optics. Med. Imag., 24, 155–159.
  • Adams, S.B., Herz, P.R., Stamper, D.L., Roberts, M.J., Bourquin, S., Patel, N.A., Schneider, K., Martin, S.D., and Shortkroff, S., Fujimoto, J.G., and Brezinski, M.E. (2006). High-resolution imaging of progressive articular cartilage degeneration. J. Orthopaed. Res., 24, 708–715.
  • Han, C.W., Chu, C.R., Adachi, N., Usas, A., Fu, F.H., Huard, J., and Pan, Y. (2003). Analysis of rabbit articular cartilage repair after chondrocyte implantation using optical coherence tomography. Osteoarthr. Cart., 11, 111–121.
  • Chu, C.R., Lin, D., Geisler, J.L., Chu, C.T., Fu, F.H., and Pan, Y.T. (2004). Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sport. Med., 32, 699–709.
  • Chu, C.R., Izzo, N.J., Irrgang, J.J., Ferretti, M., and Studer, R.K. (2007). Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J. Biomed. Optics, 12, 051703.
  • Tearney, G.J., Brezinski, M.E., Southern, J.F., Bouma, B.E., Hee, M.R., and Fujimoto, J.G. (1995). Determination of the refractive-index of highly scattering human tissue by optical coherence tomography. Optics Lett., 20, 2258–2260.
  • Pan, Y.T., Li, Z.G., Xie, T.Q., and Chu, C.R. (2003). Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Optics, 8, 648–654.
  • Li, X.D., Martin, S., Pitris, C., Ghanta, R., Stamper, D.L., Harman, M., Fujimoto, J.G., and Brezinski, M.E. (2005). High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthr. Res. Ther., 7, R318–R323.
  • Youn, J.I., Akkin, T., and Milner, T.E. (2004). Electrokinetic measurement of cartilage using differential phase optical coherence tomography. Physiol. Measur., 25, 85–95.
  • Rogowska, J., and Brezinski, M.E. (2002). Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images. Physics Med. Biol., 47, 641–655.
  • Rogowska, J., Bryant, C.M., and Brezinski, M.E. (2003). Cartilage thickness measurements from optical coherence tomography. J. Opt. Soc. Am. A, 20, 357–367.
  • Shingleton, W.D., Hodges, D.J., Brick, P., and Cawston, T.E. (1996). Collagenase: a key enzyme in collagen turnover. Biochem. Cell Biol., 74, 759–775.
  • Harris, E.D., Jr., Parker, H.G., Radin, E.L., and Krane, S.M. (1972). Effects of proteolytic enzymes on structural and mechanical properties of cartilage. Arthr. Rheum., 15, 497–503.
  • Saarakkala, S. (2007). Pre-clinical ultrasound diagnostics of articular cartilage and subchondral bone. PhD thesis, University of Kuopio, Kuopio, Finland.
  • Wang, X.Y., Zhang, C.P., Zhang, L.S., Xue, L.L., and Tian, J.G. (2002b). Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography. J. Biomed. Optics, 7, 628–632.
  • Levin, G.G., Kovalev, A.A., Minaev, V.L., and Sukhorukov, K.A. (2004). Error in measuring dry cell mass with a computerized interference microscope. Measur. Tech., 47, 412–416.
  • Giraudeau, B., Gomez, M.A., and Defontaine, M. (2003). Assessing the reproducibility of quantitative ultrasound parameters with standardized coefficient of variation or intraclass correlation coefficient: a unique approach. Osteop. Int., 14, 614–615.
  • Gluer, C.C., Blake, G., Lu, Y., Blunt, B.A., Jergas, M., and Genant, H.K. (1995). Accurate assessment of precision errors—how to measure the reproducibility of bone densitometry techniques. Osteop. Int., 5, 262–270.
  • Fournier, C., Bridal, S.L., Berger, G., and Laugier, P. (2001). Reproducibility of skin characterization with backscattered spectra (12–25 MHz) in healthy subjects. Ultrasound Med. Biol., 27, 603–610.
  • Madsen, S.J., Chu, E.A., and Wong, B.J.F. (1999). The optical properties of porcine nasal cartilage. Select. Topics Quant. Elect., IEEE J., 5, 1127–1133.
  • Hunziker, E.B., Quinn, T.M., and Hauselmann, H.J. (2002). Quantitative structural organization of normal adult human articular cartilage. Osteoarthr. Cart., 7, 564–572.
  • Shapiro, E.M., Borthakur, A., Kaufman, J.H., Leigh, J.S., and Reddy, R. (2001). Water distribution patterns inside bovine articular cartilage as visualized by H-1 magnetic resonance imaging. Osteoarthr. Cart., 9, 533–538.
  • Wang, C.C.B., Guo, X.E., Sun, D.N., Mow, V.C., Ateshian, G.A., and Hung, C.T. (2002a). The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach. Biorheology, 39, 11–25.
  • Nieminen, M.T., Rieppo, J., Toyras, J., Hakumaki, J.M., Silvennoinen, J., Hyttinen, M.M., Helminen, H.J., and Jurvelin, J.S. (2001). T-2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magnet. Reson. Med., 46, 487–493.
  • Arokoski, J.P.A., Hyttinen, M.M., Lapvetelainen, T., Takacs, P., Kosztbaczky, B., Modis, L., Kovanen, V., and Helminen, H.J. (1996). Decreased birefringence of the superficial zone collagen network in the canine knee (stifle) articular cartilage after long distance running training, detected by quantitative polarised light microscopy. Ann. Rheum. Dis., 55, 253–264.
  • Modis, L. (1991). Organization of the Extracellular Matrix: A Polarization Microscopic Approach (CRC Press, Boca Raton).
  • Myers, E.R., Lai, W.M., and Mow, V.C. (1984). A continuum theory and an experiment for the ion-induced swelling behavior of articular cartialge. J. Biomechan. Eng., 106, 151–158.
  • Setton, L.A., Tohyama, H., and Mow, V.C. (1998). Swelling and curling behaviors of articular cartilage. J. Biomechan. Eng., 120, 355–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.