151
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Multiple Changes Induced by Fibroblasts on Breast Cancer Cells

, , , , , & show all
Pages 88-104 | Received 22 Apr 2009, Accepted 28 May 2009, Published online: 15 Dec 2009

REFERENCES

  • Vogelstein, B., and Kinzler, K.W. (1993). The multistep nature of cancer. Trends Genet., 9(4):138–141.
  • Liotta, L.A., and Kohn, E.C. (2001). The microenvironment of the tumour-host interface. Nature, 411(6835):375–379.
  • Gadea, B.B., and Joyce, J.A. (2006). Tumour-host interactions: implications for developing anti-cancer therapies. Expert. Rev. Mol. Med., 8(30):1–32.
  • Tlsty, T.D., and Coussens, L.M. (2006). Tumor stroma and regulation of cancer development. Ann. Rev. Pathol., 1:119–150.
  • De Wever, O., and Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. J. Pathol., 200(4):429–447.
  • Kenny, P.A., and Bissell, M.J. (2003). Tumor reversion: correction of malignant behavior by microenvironmental cues. Int. J. Cancer, 107:688–695.
  • Shekhar, M.P., Pauley, R., and Heppner, G. (2003). Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res., 5:130–135.
  • Mazzocca, A., Coppari, R., De Franco, R., Cho, J.Y., Libermann, T.A., Pinzani, M., and Toker, A. (2005). A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res., 65(11):4728–4738.
  • Singer, C.F., Kronsteiner, N., Marton, E., Kubista, M., Cullen, K.J., Hirtenlehner, K., Seifert, M., and Kubista, E. (2002). MMP-2 and MMP-9 expression in breast cancer-derived human fibroblast is differentially regulated by stromal-epithelial interactions. Breast Cancer Res. Treat., 72:69–77.
  • Suzuki, S., Sato, M., Senoo, H., and Ishikawa, K. (2004). Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblasts; involvement of EMMPRIN and MT1-MMP. Exp. Cell Res., 293:259–266.
  • Cruz-Munoz, W., Kim, I., and Khokha, R. (2006). TIMP-3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis. Oncogene, 25(4):650–655.
  • Bhowmick, N.A., Chytil, A., Plieth, D., Gorska, A.E., Dumont, N., Shappell, S., Washington, M.K., Neilson, E.G., and Moses, H.L. (2004). TGF-beta signalling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303:848–851.
  • Gomm, J.J., Browne, P.J., Coope, R.C., Bansal, G.S., Yiangou, C., Johnston, C.L., Mason, R., and Coombes, R.C. (1997). A paracrine role for myoepitheal cell-derived FGF2 in the normal human breast. Exp. Cell Res., 234:165–173.
  • Scotton, C.J., Wilson, J.L., Scott, K., Stamp, G., Wilbanks, G.D., Fricker, S., Bridger, G., and Balkwill, F.R. (2002). Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res., 62:5930–5938.
  • Che, Z.M., Jung, T.H., Choi, J.H., Yoon do, J., Jeong, H.J., Lee, E.J., and Kim, J. (2006). The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Biochem. Biophys. Res. Commun., 346:268–275.
  • Fontana, S., Pucci-Minafra, I., Becchi, M., Freyria, A.M., and Minafra, S. (2004). Effect of collagen substrates on proteomic modulation of breast cancer cells. Proteomics, 4(3):849–860.
  • Pucci-Minafra, I., Fontana, S., Cancemi, P., Alaimo, G., and Minafra, S. (2002). Proteomic patterns of cultured breast cancer cells and epithelial mammary cells. Ann. NY Acad. Sci., 963:122–139.
  • Kumar, S., Mohan, A., and Guleria, R. (2006). Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers, 11(5):385–405.
  • Minafra, S., Morello, V., Glorioso, F., La Fiura, A.M., Tomasino, R.M., Feo, S., McIntosh, D., and Woolley, D.E. (1989). A new cell line (8701-BC). from primary ductal infiltrating carcinoma of human breast. Br. J. Cancer., 60(2):185–192.
  • Boraldi, F., Bini, L., Liberatori, S., Armini, A., Pallini, V., Tiozzo, R., Ronchetti, I.P., and Quaglino, D. (2003). Normal human dermal fibroblasts: proteomic analysis of cell layer and culture medium. Electrophoresis., 24(7–8):1292–1310.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72:248–254.
  • Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem., 68(5):850–858.
  • Blancato, J., Singh, B., Liu, A., Liao, D.J., and Dickson, R.B. (2004). Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br. J. Cancer., 90:1612–1619.
  • De Nigris, F., Sica, V., Herrmann, J., Condorelli, G., Chade, A.R., Tajana, G., Lerman, A., Lerman, L.O., and Napoli, C. (2003). c-Myc oncoprotein: cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell Cycle., 2(4):325–328.
  • Pucci-Minafra, I., Cancemi, P., Fontana, S., Minafra, L., Feo, S., Becchi, M., Freyria, A.M., and Minafra, S. (2006). Expanding the protein catalogue in the proteome reference map of human breast cancer cells. Proteomics, 6(8):2609–2625.
  • Pucci-Minafra, I., Cancemi, P., Marabeti, M.R., Albanese, N.N., Di Cara, G., Taormina, P., and Marrazzo, A. (2006). Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts. Proteomics Clin. Appl., 1:118–129.
  • Wheelock, A.M., and Goto, S. (2006). Effects of post-electrophoretic analysis on variance in gel-based proteomics. Expert Rev. Proteomics, (1):129–142.
  • Chang, J., Van Remmen, H., Ward, W.F., Regnier, F.E., Richardson, A., and Cornell, J. (2004). Processing of data generated by 2-dimensional gel electrophoresis for statistical analysis: missing data, normalization, and statistics. J. Proteome Res., 3:1210–1218.
  • Pucci-Minafra, I., Cancemi, P., Di Cara, G., Minafra, L., Feo, S., Forlino, A., Tira, M.E., Tenni, R., Martini, D., Ruggeri, A., and Minafra, S. (2008). Decorin transfection induces proteomic and phenotypic modulation in breast cancer cells 8701-BC. Connect. Tissue Res., 49(1):30–41.
  • Lin, J.J., Eppinga, R.D., Warren, K.S., and McCrae, K.R. (2008). Human tropomyosin isoforms in the regulation of cytoskeleton functions. Adv. Exp. Med. Biol., 644:201–222.
  • Huang, L.E. (2008). Carrot and stick: HIF-alpha engages c-Myc in hypoxic adaptation. Cell Death Differ., 15(4):672–677.
  • Gillies, R.J., and Gatenby, R.A. (2007). Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J. Bioenerg. Biomembr., 39(3):251–257.
  • Lahav, J., Gofer-Dadosh, N., Luboshitz, J., Hess, O., and Shaklai, M. (2000). Protein disulfide isomerase mediates integrin dependent adhesion. FEBS Lett., 475:89–92.
  • Goplen, D., Wang, J., Enger, P.Ø., Tysnes, B.B., Terzis, A.J., Laerum, O.D., and Bjerkvig, R. (2006). Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res., 66(20):9895–9902.
  • Hayes, M.J., Shao, D., Bailly, M., and Moss, S.E. (2006). Regulation of actin dynamics by annexin 2. EMBO J., 25:1816–1826.
  • Rhee, H.J., Kim, G.Y., Huh, J.W., Kim, S.W., and Na, D.S. (2000). Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydryl-reactive agent. Eur. J. Biochem., 267:3220–3225.
  • Sapkota, D., Bruland, O., Bøe, O.E., Bakeer, H., Elgindi, O.A., Vasstrand, E.N., and Ibrahim, S.O. (2008). Expression profile of the S100 gene family members in oral squamous cell carcinomas. J. Oral. Pathol. Med., 37(10):607–615.
  • Carlsson, H., Petersson, S., and Enerbäck, C. (2005). Cluster analysis of S100 gene expression and genes correlating to psoriasin (S100A7) expression at different stages of breast cancer development. Int. J. Oncol., 27(6): 1473–1481.
  • Skinnider, B.F., Folpe, A.L., Hennigar, R.A., Lim, S.D., Cohen, C., Tamboli, P., Young, A., de Peralta-Venturina, M., and Amin, M.B. (2005). Distribution of cytokeratins and vimentin in adult renal neoplasms and normal renal tissue: potential utility of a cytokeratin antibody panel in the differential diagnosis of renal tumors. Am. J. Surg. Pathol., 29(6):747–754.
  • Moll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R. (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell, 31:11–24.
  • Coulombe, P.A., and Omary, M.B. (2002). ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol., 14:110–122.
  • Kraut, N., Beug, H., and Huber, M.A. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol., 17(5):548–558.
  • Vincent-Salomon, A., and Thiery, J.P. (2003). Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res., 5(2):101–106.
  • Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer., 4(11):891–899.
  • Heylen, N., Baurain, R., Remacle, C., and Trouet, A. (1998). Effect of MRC-5 fibroblast conditioned medium on breast cancer cell motility and invasion in vitro. Clin Exp Metast, 16(2):193–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.