397
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Adipose-derived Stem cells and BMP2: Part 2. BMP2 may not influence the osteogenic fate of human adipose-derived stem cells

, , , &
Pages 119-132 | Received 20 Jan 2010, Accepted 07 Apr 2010, Published online: 11 Aug 2010

REFERENCES

  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J.I., Futrell, W.J., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multi-lineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–226.
  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Hunag, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Behaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13:4279–4295.
  • Hattori, H., Sato, M., Masuoka, K., Ishihara, M., Kikuchi, T., Matsui, T., Takase, B., Ishizuka, T., Kikuchi, M., Fujikawa, K., and Ishihara, M. (2004). Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs. 178(1):2–12.
  • Hicok, K.C., Du Laney, T.V., Zhou, Y.S., Halvorsen, Y.D., Hitt, D.C., Cooper, L.F., and Gimble, J.M. (2004). Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 10(3–4):371–380.
  • Dudas, J.R., Marra, K.G., Cooper, G.M., Penascino, V.M., Mooney, M.P., Jiang, S., Rubin, J.P., and Losee, J.E. (2006). The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann. Plast. Surg. 56(5):543–548.
  • Conejero, JA., Lee, J.A., Parrett, B.M., Terry, M., Wear-Maggitti, K., Grant, R.T., and Breitbart, A.S. (2006). Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast. Reconstr. Surg. 117(3):857–863.
  • Yoon, E., Dhar, S., Chun, D.E., Gharibjanian, N.A., and Evans, G.R. (2007). In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng. 13(3):619–627.
  • Cowan, C.M., Shi, Y.Y., Aalami, O.O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C.H., Wu, B., and Longaker, M.T. (2004). Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22(5):560–567.
  • Lendeckel, S., Jodicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J.K., Hedrick, M.H., Berthold, L., and Howaldt, H.P. (2004). Autologous stem cells (adipose) and fibrin glue used treat widespread traumatic calvarial defects: Case report. J. Craniomaxillofac. Surg. 32(6):370–373.
  • Lieberman, J.R., Daluiski, A., Stevenson, S., Wu, L., McAllister, P., Lee, Y.P., Kabo, J.M., Finerman, G.A., Berk, A.J., and Witte, O.N. (1999). The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J. Bone Joint Surg. Am. 81(7):905–917.
  • Shen, H.C., Peng, H., Usas, A., Gearhart, B., Fu, F.H., and Huard, J. (2004). Structural and functional healing of critical-size segmental bone defects by transduced muscle-derived cells expressing BMP4. J. Gene Med. 6(9):984–991.
  • Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P., and Lou, J. (2003). Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthon. Res. 21(1):44–53.
  • Peterson, B., Zhang, J., Iglesias, R., Kabo, M., Hedrick, M., Benhaim, P., and Lieberman, J.R. (2005). Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 11(1–2): 120–129.
  • Dragoo, J.L., Lieberman, J.R., Lee, R.S., Deugarte, D.A., Lee, Y., Zuk, P.A., Hedrick, M.H., and Benhaim, P. (2005). Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast. Reconstr. Surg. 115(6):1665–1673.
  • Lin, Y., Tang, W., Wu, L., Jing, W., Li, X., Wu, Y., Liu, L., Long, J., and Tian, W. (2008). Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel. Histochem. Cell Biol. 129(2):203–210.
  • Chou, Y.-F., Zuk, P.A., Chang, T.-L., Benhaim, P., and Wu, B.M. (2010). Adipose-derived stem cells and BMP2: Part1. BMP2-treated adipose-derived stem cells do not improve repair of segmental femoral defects. Connect. Tissue Res. in press.
  • Kim, Y.J., Lee, M.H., Wozney, J.M., Cho, J.Y., and Ryoo, H.M. (2004). Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J. Biol. Chem. 279(49):50773–50780.
  • Lee, M.H., Kim, Y.J., Kim, H.J., Park, H.D., Kang, A.R., Kyung, H.M., Sung, J.H., Wozney, J.M., Kim, H.J., and Ryoo, H.M. (2003). BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278(36):34387–34394.
  • Ulsamer, A., Ortuno, M.J., Ruiz, S., Susperregui, A.R., Osses, N., Rosa, J.L., and Ventura, F. (2008). BMP-2 induces Osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J. Biol. Chem. 283(7):3816–3826.
  • Cui, L., Liu, B., Liu, G., Zhang, W., Cen, L., Sun, J., Yin, S., Liu, W., and Cao, Y. (2007). Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 28(36):5477–5486.
  • Katagiri, T., Akiyama, S., Namiki, M., Komaki, M., Yamaguchi, A., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., and Suda, T. (1997). Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp. Cell Res. 230(2): 342–351.
  • Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., and Bae, S.C. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell Biol. 20(23):8783–8792.
  • Nishimura, R., Kato, Y., Chen, D., Harris, S.E., Mundy, G.R., and Yoneda, T. (1998). Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J. Biol. Chem. 273(4):1872–1879.
  • Sakano, S., Murata, Y., Miura, T., Iwata, H., Sato, K., Matsui, N., and Seo, H. (1993). Collagen and alkaline phosphatase gene expression during bone morphogenetic protein (BMP)-induced cartilage and bone differentiation. Clin. Orthop. Relat. Res. 292:337–344.
  • Knippenberg, M., Helder, M.N., Doulabi, B.Z., Bank, R.A., Wuisman, P.I., and Klein-Nulend, J. (2009). Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part A. 15(8):2213–2225.
  • Knippenberg, M., Helder, M.N., Zandieh Doulabi, B., Wuisman, P.I., and Klein-Nulend, J. (2006). Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 342(3): 902–908.
  • Diefenderfer, D.L., Osyczka, A.M., Reilly, G.C., and Leboy, P.S. (2003). BMP reponsiveness in human mesenchymal stem cells. Connect. Tissue Res. 44(Suppl 1):305–311.
  • Osyczka, A.M., Diefenderfer, D.L., Bhargave, G., and Leboy, P.S. (2004). Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells Tissues Organs. 176(1–3): 109–119.
  • Pilgaard, L., Lund, P., Duroux, M., Fink, T., Ulrich-Vinther, M., Soballe, K., and Zachar, V. (2009). Effect of oxygen concentration, culture format and donor variability on in vitro chondrogenesis of human adipose tissue-derived stem cells. Regen. Med. 4(4):539–548.
  • Sen, A., Lea-Currie, Y.R., Sujkowska, D., Franklin, D.M., Wilkison, W.O., Halvorsen, Y.D., and Gimble, J.M. (2001). Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J. Cell. Biochem. 81(2):312–319.
  • Varma, M.J., Breuls, R.G., Schouten, T.E., Jurgens, W.J., Bontkes, H.J., Schuurhuis, G.J., van Ham, S.M., and van Milligen, F.J. (2007). Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 16(1):91–104.
  • Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. (1997). Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 389(6651): 622–626.
  • Murakami, G., Watabe, T., Takaoka, K., Miyazono, K., and Imamura, T. (2003). Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell. 14(7):2809–2817.
  • Winkler, D.G., Yu, C., Geoghegan, J.C., Ojala, E.W., Skonier, J.E., Shpektor, D., Sutherland, M.K., and Latham, J.A. (2004). Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J. Biol. Chem. 279(35):36293–36298.
  • Heldin, C.H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390(6659):465–471.
  • Noth, U., Tuli, R., Seghatoleslami, R., Howard, M., Shah, A., Hall, D.J., Hickok, N.J., and Tuan, R.S. (2003). Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res. 29(1):201–211.
  • Xiao, Z., Latek, R., and Lodish, H.F. (2003). An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity. Oncogene. 22(7):1057–1069.
  • Kurisaki, A., Kose, S., Yoneda, Y., Heldin, C.H., and Moustakas, A. (2001). Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol. Biol. Cell. 12(4):1079–1091.
  • Hassan, M.Q., Tare, R.S., Lee, S.H., Mandeville, M., Morasso, M.I., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S., and Lian, J.B. (2006). BMP2 commitment to the osteogenic lineage involves activation of Runx2 by Dlx3 and a homeodomain transcriptional network. J. Biol. Chem. 281(52): 40515–40526.
  • Miyama, K., Yamada, G., Yamamoto, T.S., Takagi, C., Miyado, K., Sakai, M., Ueno, N., and Shibuya, H. (1999). A BMP-inducible gene dlx5, regulates osteoblast differentiation and mesoderm induction. Dev. Biol. 208(1):123–133.
  • Kim, Y.J., Kim, H.N., Park, E.K., Lee, B.H., Ryoo, H.M., Kim, S.Y., Kim, I.S., Stein, J.L., Lian, J.B., Stein, G.S., van Wijnen, A.J., and Choi, J.Y. (2006). The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene. 366(1)145–151.
  • Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., and de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108(1):17–29.
  • Matsubara, T., Kida, K., Yamaguchi, A., Hata, K., Ichida, F., Meguro, H., Aburatani, H., Nishimura, R., and Yoneda, T. (2008). BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J.Biol.Chem. 283(43): 29119–29125.
  • Itoh, T., Nozawa, Y. and Akao, Y. (2009). MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J. Biol. Chem. 284(29): 19272–19279.
  • Kim, Y.J., Bae, S.W., Yu, S.S., Bae, Y.C., and Jung, J.S. (2009). miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 24(5): 816–825.
  • Luzi, E., Marini, F., Sala, S.C., Tognarini, I., Galli, G., and Brandi, M.L. (2008). Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 23(2):287–295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.