2,004
Views
146
CrossRef citations to date
0
Altmetric
Review

Molecular and structural mapping of collagen fibril interactions

, &
Pages 2-17 | Received 29 Apr 2010, Accepted 22 Jul 2010, Published online: 23 Dec 2010

REFERENCES

  • Prockop, D.J., and Kivirikko, K.I. (1995). Collagens: Molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64:403–434.
  • Hulmes, D. (1992). Collagens: Molecular biology, diseases, and potentials for therapy. Essays Biochem. 27:49–67.
  • Hulmes, D. (2002). Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137:2–10.
  • Di Lullo, G., Sweeney, S., Korkko, J., Ala-Kokko, L., and San Antonio, J. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277:4223–4231.
  • Sweeney, S., Orgel, J., Fertala, A., McAuliffe, J., Turner, K., Di Lullo, G., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forlino, A., Cabral, W., Barnes, A., Marini, J., and Antonio, J. (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283:21187–21197.
  • Perumal, S., Antipova, O., and Orgel, J. (2008). Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. U.S.A 105:2824–2829.
  • Twardowski, T., Fertala, A., Orgel, J., and San Antonio, J. (2007). Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr. Pharm. Des. 13:3608–3621.
  • Kadler, K., Baldock, C., Bella, J., and Boot-Handford, R. (2007). Collagens at a glance. J. Cell. Sci. 120:1955–1958.
  • Kadler, K. (1995). Extracellular matrix 1: Fibril-forming collagens. Protein Profile 2:491–619.
  • Kadler, K. (1994). Extracellular matrix. 1: Fibril-forming collagens. Protein Profile 1:519–638.
  • Tam, E., Wu, Y., Butler, G., Stack, M., and Overall, C. (2002). Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. The ectodomain of the 44-kDa autocatalytic product of MT1-MMP inhibits cell invasion by disrupting native type I collagen cleavage. J. Biol. Chem. 277:39005–39014.
  • Vogel, W. (2001). Collagen-receptor signaling in health and disease. Eur. J. Dermatol. 11:506–514.
  • Zaman, M., Trapani, L., Sieminski, A., Mackellar, D., Gong, H., Kamm, R., Wells, A., Lauffenburger, D., and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. U.S.A 103:10889–10894.
  • Siljander, P., and Lassila, R. (1999). Studies of adhesion-dependent platelet activation: Distinct roles for different participating receptors can be dissociated by proteolysis of collagen. Arterioscler. Thromb. Vasc. Biol. 19:3033–3043.
  • Martos, R., Baugh, J., Ledwidge, M., O'Loughlin, C., Conlon, C., Patle, A., Donnelly, S., and McDonald, K. (2007). Diastolic heart failure: Evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115:888–895.
  • Querejeta, R., Lopez, B., Gonzalez, A., Sanchez, E., Larman, M., Martinez Ubago, J., and Diez, J. (2004). Increased collagen type I synthesis in patients with heart failure of hypertensive origin: Relation to myocardial fibrosis. Circulation 110: 1263–1268.
  • Sell, D., Strauch, C., Shen, W., and Monnier, V. (2008). Aging, diabetes, and renal failure catalyze the oxidation of lysyl residues to 2-aminoadipic acid in human skin collagen: Evidence for metal-catalyzed oxidation mediated by alpha-dicarbonyls. Ann. N. Y. Acad. Sci. 1126:205–209.
  • Sell, D., and Monnier, V. (1990). End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J. Clin. Invest. 85:380–384.
  • De Ceuninck, F., Sabatini, M., Renoux, V., de Nanteuil, G., and Pastoureau, P. (2003). Urinary collagen type II C-telopeptide fragments are sensitive markers of matrix metalloproteinase-dependent cartilage degradation in rat adjuvant-induced arthritis. J. Rheumatol. 30:1561–1564.
  • Cremer, M., and Kang, A. (1988). Collagen-induced arthritis in rodents: A review of immunity to type II collagen with emphasis on the importance of molecular conformation and structure. Int. Rev. Immunol. 4:65–81.
  • Rosloniec, E., Ivey, R., Whittington, K., Kang, A., and Park, H. (2006). Crystallographic structure of a rheumatoid arthritis MHC susceptibility allele, HLA-DR1 (DRB1*0101), complexed with the immunodominant determinant of human type II collagen. J. Immunol. 177:3884–3892.
  • Malmstrom, V., Michaelsson, E., Burkhardt, H., Mattsson, R., Vuorio, E., and Holmdahl, R. (1996). Systemic versus cartilage-specific expression of a type II collagen-specific T-cell epitope determines the level of tolerance and susceptibility to arthritis. Proc. Natl. Acad. Sci. U.S.A 93:4480–4485.
  • Shoulders, M.D., and Raines, R.T. (2009). Collagen structure and stability. Annu. Rev. Biochem. 78:929–958.
  • Hulmes, D., Holmes, D., and Cummings, C. (1985). Crystalline regions in collagen fibrils. J. Mol. Biol. 184:473–477.
  • Raspanti, M., Alessandrini, A., Gobbi, P., and Ruggeri, A. (1996). Collagen Fibril Surface: TMAFM, FEG-SEM and Freeze- Etching Observations. Microsc. Res. Tech. 35:87–93.
  • Holmes, D., and Kadler, K. (2006). The 10+4 microfibril structure of thin cartilage fibrils. Proc. Natl. Acad. Sci. U.S.A 103:17249–17254.
  • Holmes, D., Gilpin, C., Baldock, C., Ziese, U., Koster, A., and Kadler, K. (2001). Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization. Proc. Natl. Acad. Sci. U.S.A 98:7307–7312.
  • Gross, J., and Schmitt, F.O. (1948). The structure of human skin collagen as studied with the electron microscope. J. Exp. Med. 88:555–568.
  • Yamamoto, S., Hashizume, H., Hitomi, J., Shigeno, M., Sawaguchi, S., Abe, H., and Ushiki, T. (2000). The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy. Arch. Histol. Cytol. 63:127–135.
  • Ottani, V., Martini, D., Franchi, M., Ruggeri, A., and Raspanti, M. (2002). Hierarchical structures in fibrillar collagens. Micron 33:587–596.
  • Chapman, J. (1974). The staining pattern of collagen fibrils. I. An analysis of electron micrographs. Connect. Tissue Res. 2:137–150.
  • Petruska, J., and Hodge, A. (1964). A Subunit Model for the Tropocollagen Macromolecule. Proc. Natl. Acad. Sci. U.S.A 51:871–876.
  • Orgel, J., Irving, T., Miller, A., and Wess, T. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A 103:9001–9005.
  • Brodsky, B., and Persikov, A. (2005). Molecular structure of the collagen triple helix. Fibrous proteins: coiled-coils, collagen and elastomers, 70:301–339.
  • Okuyama, K., Xu, X., Iguchi, M., and Noguchi, K. (2006). Revision of collagen molecular structure. Biopolymers 84: 181–191.
  • Rich, A., and Crick, F. (1961). The molecular structure of collagen. J. Mol. Biol. 3:483–506.
  • Hulmes, D., and Miller, A. (1979). Quasi-hexagonal molecular packing in collagen fibrils. Nature 282:878–880.
  • Orgel, J., Miller, A., Irving, T., Fischetti, R., Hammersley, A., and Wess, T. (2001). The in situ supermolecular structure of type I collagen. Structure (Camb) 9:1061–1069.
  • Orgel, J., and Wess, T. (2000). Changes in collagen structure: Drying, dehydrothermal treatment and relation to long term deterioration. Thermochim. Acta 365:119–128.
  • Antipova, O., and Orgel, J.P. (2010). In Situ D-periodic Molecular Structure of Type II Collagen. J. Biol. Chem. 285:7087–7096.
  • Eikenberry, E., Childs, B., Sheren, S., Parry, D., Craig, A., and Brodsky, B. (1984). Crystalline fibril structure of type II collagen in lamprey notochord sheath. J. Mol. Biol. 176: 261–277.
  • Brodsky, B., BelBruno, K., Hardt, T., and Eikenberry, E. (1994). Collagen fibril structure in lamprey. J. Mol. Biol. 243:38–47.
  • Kuhn, K. (1985). Structure and biochemistry of collagen. Aesthetic Plast. Surg. 9:141–144.
  • Orgel, J., Wess, T., and Miller, A. (2000). The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. Structure Fold. Des. 8:137–142.
  • Ortolani, F., Giordano, M., and Marchini, M. (2000). A model for type II collagen fibrils: Distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains. Biopolymers 54:448–463.
  • Clark, G. (1935). New measurements of previously unknown large interplaner spaceings in natural materials. J. Amer. Chem. Soc. 57:1509–1509.
  • Clark, G., and Schaad, J. (1936). X-ray diffraction studies of tendon and intestinal wall collagen. Radiology 27:339–356.
  • Wyckoff, R., Corey, R., and Biscoe, J. (1935). X-ray reflections of long spacing from tendon. Science 82:175–176.
  • Corey, R., and Wyckoff, R. (1936). Long spacings in macromolecular solids. J. Biol. Chem. 114:407–414.
  • Bella, J., Eaton, M., Brodsky, B., and Berman, H. (1994). Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81.
  • Okuyama, K., Okuyama, K., Arnott, S., Takayanagi, M., and Kakudo, M. (1981). Crystal and molecular structure of a collagen-like polypeptide (Pro-Pro-Gly)10. J. Mol. Bio. 152:427–443.
  • Rainey, J., and Goh, M. (2002). A statistically derived parameterization for the collagen triple-helix. Protein Sci. 11:2748–2754.
  • Orgel, J.P.R.O., Eid, A., Antipova, O., Bella, J., and Scott, J.E. (2009). Decorin core protein (decoron) shape complements collagen fibril surface structure and mediates its binding. PLoS ONE 4:e7028.
  • Miller, A. (1976). Biochemistry of collagen. New York: Plenum Press.
  • Bornstein, P., and Traub, W. (1979). The chemistry and biology of collagen: The proteins, 4. Academic Press.
  • Smith, J. (1968). Molecular pattern in native collagen. Nature 219:157–158.
  • Wess, T., Hammersley, A., Wess, L., and Miller, A. (1995). Type I collagen packing, conformation of the triclinic unit cell. J. Mol. Biol. 248:487–493.
  • Wess, T., Hammersley, A., Wess, L., and Miller, A. (1998). Molecular packing of type I collagen in tendon. J. Mol. Biol. 275:255–267.
  • Orgel, J., Miller, A., Irving, T., and Wess, T. (2002). A Review of an Old and Difficult problem, and how it was solved. Fibre Diffrac. Rev. 10:40–50.
  • Fraser, R., and MacRae, T. (1981). Unit cell and molecular connectivity in tendon collagen. Int. J. Biol. Macromol. 3: 193–200.
  • Fraser, R., MacRae, T., Miller, A., and Suzuki, E. (1983). Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 167:497–521.
  • Fraser, R., MacRae, T., and Miller, A. (1987). Molecular packing in type I collagen fibrils. J. Mol. Biol. 193:115–125.
  • Hulmes, D., Jesior, J., Miller, A., Berthet-Colominas, C., and Wolff, C. (1981). Electron microscopy shows periodic structure in collagen fibril cross sections. Proc. Natl. Acad. Sci. U.S.A 78:3567–3571.
  • Hulmes, D., Wess, T., Prockop, D., and Fratzl, P. (1995). Radial packing, order, and disorder in collagen fibrils. Biophys. J. 68:1661–1670.
  • Herr, A.B., and Farndale, R.W. (2009). Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen. J. Biol. Chem. 284:19781–19785.
  • Nakamura, T., Jamieson, G.A., Okuma, M., Kambayashi, J., and Tandon, N.N. (1998). Platelet adhesion to native type I collagen fibrils. Role of GPVI in divalent cation-dependent and -independent adhesion and thromboxane A2 generation. J. Biol. Chem. 273:4338–4344.
  • Inoue, O., Suzuki-Inoue, K., and Ozaki, Y. (2008). Redundant mechanism of platelet adhesion to laminin and collagen under flow: Involvement of von Willebrand factor and glycoprotein Ib-IX-V. J. Biol. Chem. 283:16279–16282.
  • Scott, J.E., and Haigh, M. (1988). Identification of specific binding sites for keratan sulphate proteoglycans and chondroitin-dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in ‘critical-electrolyte-concentration’ techniques. Biochem. J. 253: 607–610.
  • Okuyama, K., Bachinger, H.P., Mizuno, K., Boudko, S., Engel, J., Berisio, R., and Vitagliano, L. (2009). Comment on Microfibrillar structure of type I collagen in situ by Orgel et al. (2006), Proc. Natl. Acad. Sci. USA, 103:9001–9005. Acta Crystallogr. D Biol. Crystallogr. D65:1007–1008.
  • Orgel, J.P. (2009). On the packing structure of collagen: Response to Okuyama et al.'s comment on Microfibrillar structure of type I collagen in situ. Acta Crystallogr. D Biol. Crystallogr. D65:1009–1010.
  • Erat, M.C., Slatter, D.A., Lowe, E.D., Millard, C.J., Farndale, R.W., Campbell, I.D., and Vakonakis, I. (2009). Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc. Natl. Acad. Sci. U.S.A 106:4195–4200.
  • Lauer-Fields, J., Chalmers, M., Busby, S., Minond, D., Griffin, P., and Fields, G. (2009). Identification of Specific Hemopexin-like Domain Residues That Facilitate Matrix Metalloproteinase Collagenolytic Activity. J. Biol. Chem. 284: 24017–24024.
  • Saffarian, S., Collier, I., Marmer, B., Elson, E., and Goldberg, G. (2004). Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science 306:108–111.
  • Visse, R., and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res. 92:827–839.
  • Stultz, C. (2002). Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. J. Mol. Biol. 319:997–1003.
  • Nerenberg, P.S., Salsas-Escat, R., and Stultz, C.M. (2008). Do collagenases unwind triple-helical collagen before peptide bond hydrolysis? Reinterpreting experimental observations with mathematical models. Proteins 70:1154–1161.
  • Nerenberg, P.S., and Stultz, C.M. (2008). Differential unfolding of alpha1 and alpha2 chains in type I collagen and collagenolysis. J. Mol. Biol. 382:246–256.
  • Salsas-Escat, R., and Stultz, C.M.. (2010). Conformational selection and collagenolysis in Type III collagen. Proteins 78:325–335.
  • Vater, C.A. Jr., and Siegel, R.C. (1979). Native cross-links in collagen fibrils induce resistance to human synovial collagenase. Biochem. J. 181:639–645.
  • Chan, V., Ramshaw, J., Kirkpatrick, A., Beck, K., and Brodsky, B. (1997). Positional preferences of ionizable residues in Gly-X-Y triplets of the collagen triple-helix. J. Biol. Chem. 272:31441–31446.
  • Hynes, R. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell 110:673–687.
  • Staatz, W., Walsh, J., Pexton, T., and Santoro, S. (1990). The alpha 2 beta 1 integrin cell surface collagen receptor binds to the alpha 1 (I)-CB3 peptide of collagen. J. Biol. Chem. 265:4778–4781.
  • Giancotti, F.G., and Ruoslahti, E. (1999). Integrin signaling. Science 285:1028–1033.
  • Martinez-Lemus, L., Wu, X., Wilson, E., Hill, M., Davis, G., Davis, M., and Meininger, G. (2003). Integrins as unique receptors for vascular control. J. Vasc. Res. 40:211–233.
  • Delon, I., and Brown, N. (2007). Integrins and the actin cytoskeleton. Curr. Opin. Cell Biol. 19:43–50.
  • Defilippi, P., Olivo, C., Venturino, M., Dolce, L., Silengo, L., and Tarone, G. (1999). Actin cytoskeleton organization in response to integrin-mediated adhesion. Microsc. Res. Tech. 47:67–78.
  • Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Cell Tissue Res. 339:269–280.
  • Timpl, R. (1989). Structure and biological activity of basement membrane proteins. Eur. J. Biochem. 180:487–502.
  • Khoshnoodi, J., Pedchenko, V., and Hudson, B.G. (2008). Mammalian collagen IV. Microsc. Res. Tech. 71:357–370.
  • Parkin, J.D., San Antonio, J.D., Pedchenko, V., Hudson, B., Jensen, S.T., and Savige, J. Mapping structural landmarks and mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions and variation in phenotypes in inherited diseases affecting basement membranes. Submitted [date unknown].
  • Xu, Y., Gurusiddappa, S., Rich, R., Owens, R., Keene, D., Mayne, R., Hook, A., and Hook, M. (2000). Multiple binding sites in collagen type I for the integrins alpha1beta1 and alpha2beta1. J. Biol. Chem. 275:38981–38989.
  • Knight, C.G. (1998). Identification in Collagen Type I of an Integrin alpha 2beta 1-binding Site Containing an Essential GER Sequence. J. Biol. Chem. 273:33287–33294.
  • Knight, C.G., Morton, L.F., Peachey, A.R., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J. (2000). The collagen-binding A-domains of integrins alpha1beta1 and alpha2beta1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275:35–40.
  • Emsley, J., King, S., Bergelson, J., and Liddington, R. (1997). Crystal structure of the I domain from integrin alpha2beta1. J. Biol. Chem. 272:28512–28517.
  • Xu, J., Rodriguez, D., Petitclerc, E., Kim, J.J., Hangai, M., Yuen, S.M., Davis, G.E., and Brooks, P.C. (2001). Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol. 154:1069–1080.
  • Kleinman, H.K., McGoodwin, E.B., Martin, G.R., Klebe, R.J., Fietzek, P.P., and Woolley, D.E. (1978). Localization of the binding site for cell attachment in the alpha1(I) chain of collagen. J. Biol. Chem. 253:5642–5646.
  • Dzamba, B., Wu, H., Jaenisch, R., and Peters, D. (1993). Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J. Cell Biol. 121:1165–1172.
  • Sumner-Smith, G. (2002). Bone in clinical orthopedics. New York: Thieme.
  • Nishida, T., Nakagawa, S., Awata, T., Ohashi, Y., Watanabe, K., and Manabe, R. (1983). Fibronectin promotes epithelial migration of cultured rabbit cornea in situ. J. Cell Biol. 97: 1653–1657.
  • Leeb, S.N., Vogl, D., Grossmann, J., Falk, W., Scholmerich, J., Rogler, G., and Gelbmann, C.M. (2004). Autocrine fibronectin-induced migration of human colonic fibroblasts. Am. J. Gastroenterol. 99:335–340.
  • Cho, J., and Mosher, D.F. (2006). Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood 108:2229–2236.
  • Ni, H., Yuen, P.S.T., Papalia, J.M., Trevithick, J.E., Sakai, T., Fässler, R., Hynes, R.O., and Wagner, D.D. (2003). Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc. Natl. Acad. Sci. U.S.A 100:2415–2419.
  • Lecut, C., Arocas, V., Ulrichts, H., Elbaz, A., Villeval, J., Lacapère, J., Deckmyn, H., and Jandrot-Perrus, M. (2004). Identification of residues within human glycoprotein VI involved in the binding to collagen. J. Biol. Chem. 279:52293–52299.
  • Smethurst, P.A., Onley, D.J., Jarvis, G.E., O'Connor, M.N., Knight, C.G., Herr, A.B., Ouwehand, W.H., and Farndale, R.W. (2007). Structural basis for the platelet-collagen interaction: The smallest motif within collagen that recognizes and activates platelet glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 282:1296.
  • Trivedi, V., Boire, A., Tchemychev, B., Kaneider, N., Leger, A., O'Callaghan, K., Covic, L., and Kuliopulos, A. (2009). Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 137:332–343.
  • Scott, P., McEwan, P., Dodd, C., Bergmann, E., Bishop, P., and Bella, J. (2004). Crystal structure of the dimeric protein core of decorin, the archetypal small leucine-rich repeat proteoglycan. Proc. Natl. Acad. Sci. U.S.A 101:15633–15638.
  • Scott, P., Dodd, C., and Pringle, G. (1993). Mapping the locations of the epitopes of five monoclonal antibodies to the core protein of dermatan sulfate proteoglycan II (decorin). J. Biol. Chem. 268:11558–11564.
  • Scott, P. (1991). Physical studies on the protein core of skin dermatan sulphate proteoglycan II (decorin). Biochem. Soc. Trans. 19:377S.
  • Scott, P., Dodd, C., Tredget, E., Ghahary, A., and Rahemtulla, F. (1995). Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology 26:423–431.
  • Scott, J. (1996). Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry 35:8795–8799.
  • Scott, J., and Haigh, M. (1988). Identification of specific binding sites for keratan sulphate proteoglycans and chondroitin-dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in ‘critical-electrolyte-concentration’ techniques. Biochem. J. 253:607–610.
  • Scott, J.E., Orford, C.R., and Hughes, E.W. (1981). Proteoglycan-collagen arrangements in developing rat tail tendon: An electron microscopical and biochemical investigation. Biochem. J. 195:573–581.
  • Scott, J. (2008). Cartilage is held together by elastic glycan strings: Physiological and pathological implications. Biorheology 45:209–217.
  • Scott, J. (1992). Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 6:2639–2645.
  • Scott, P., Dodd, C., Tredget, E., Ghahary, A., and Rahemtulla, F. (1996). Chemical characterization and quantification of proteoglycans in human post-burn hypertrophic and mature scars. Clin. Sci. 90:417–425.
  • Toole, B. (1969). Solubility of collagen fibrils formed in vitro in the presence of sulphated acid mucopolysaccharide-protein. Nature 222:872–873.
  • Xu, G., Guimond, M., Chakraborty, C., and Lala, P. (2002). Control of proliferation, migration, and invasiveness of human extravillous trophoblast by decorin, a decidual product. Biol. Reprod. 67:681–689.
  • Goldoni, S., Owens, R., McQuillan, D., Shriver, Z., Sasisekharan, R., Birk, D., Campbell, S., and Iozzo, R. (2004). Biologically active decorin is a monomer in solution. J. Biol. Chem. 279:6606–6612.
  • Elliott, D., Robinson, P., Gimbel, J., Sarver, J., Abboud, J., Iozzo, R., and Soslowsky, L. (2003). Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann. Biomed. Eng. 31:599–605.
  • Merrilees, M., Beaumont, B., and Scott, L. (2001). Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: Correlation to patency. Coron. Artery. Dis. 12:7–16.
  • Polgar, A., Falus, A., Koo, E., Ujfalussy, I., Sesztak, M., Szuts, I., Konrad, K., Hodinka, L., Bene, E., Meszaros, G., Ortutay, Z., Farkas, E., Paksy, A., and Buzas, E. (2003). Elevated levels of synovial fluid antibodies reactive with the small proteoglycans biglycan and decorin in patients with rheumatoid arthritis or other joint diseases. Rheumatology 42:522–527.
  • Heikkila, T., Seppala, I., Saxen, H., Panelius, J., Yrjanainen, H., and Lahdenne, P. (2002). Species-specific serodiagnosis of Lyme arthritis and neuroborreliosis due to Borrelia burgdorferi sensu stricto, B. Afzelii, and B. Garinii by using decorin binding protein A. J. Clin. Microbiol. 40:453–460.
  • Noble, D., Lewthwaite, J., Dudhia, J., Blake, S., Henderson, B., and Hardingham, T. (1993). In situ hybridisation for decorin mRNA in rabbit synovium during antigen-induced arthritis. Agents Actions Suppl. 39:249–253.
  • Scott, P., Grossmann, J., Dodd, C., Sheehan, J., and Bishop, P. (2003). Light and X-ray scattering show decorin to be a dimer in solution. J. Biol. Chem. 278:18353–18359.
  • Weber, I., Harrison, R., and Iozzo, R. (1996). Model structure of decorin and implications for collagen fibrillogenesis. J. Biol. Chem. 271:31767–31770.
  • Konitsiotis, A.D., Raynal, N., Bihan, D., Hohenester, E., Farndale, R.W., and Leitinger, B. (2008). Characterization of high affinity binding Motifs for the Discoidin Domain Receptor DDR2 in collagen. J. Biol. Chem. 283:6861–6868.
  • San Antonio, J., Lander, A., Karnovsky, M., and Slayter, H. (1994). Mapping the heparin-binding sites on type I collagen monomers and fibrils. J. Cell Biol. 125:1179–1188.
  • Sweeney, S.M., Guy, C.A., Fields, G.B., and Antonio, J.D.S. (1998). Defining the domains of type I collagen involved in heparin- binding and endothelial tube formation. Proc. Natl. Acad. Sci. U.S.A 95:7275–7280.
  • Kahn, M.L. (2004). Platelet-collagen responses: Molecular basis and therapeutic promise. Semin. Thromb. Hemost. 419.
  • Chung, L., Dinakarpandian, D., Yoshida, N., Lauer-Fields, J., Fields, G., Visse, R., and Nagase, H. (2004). Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 23:3020–3030.
  • Piez, K. (1984). Molecular and aggregate structures of the collagens. In Extracellular Matrix Biochemistry. New York: Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.