383
Views
40
CrossRef citations to date
0
Altmetric
Original Article

Collagen fibril surface displays a constellation of sites capable of promoting fibril assembly, stability, and hemostasis

, , , , , , & show all
Pages 18-24 | Received 21 Jul 2010, Accepted 22 Jul 2010, Published online: 30 Nov 2010

REFERENCES

  • Ayad, S., Boot-Handford, R., Humphries, M., Kadler, K., and Shuttleworth, C. (1998). The Extracellular Matrix Facts Book, 2 p. Academic Press.
  • Kadler, K., Baldock, C., Bella, J., and Boot-Handford, R. (2007). Collagens at a glance. J. Cell. Sci. 120:1955–1958.
  • Orgel, J., Irving, T., Miller, A., and Wess, T. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A. 103:9001–9005.
  • Petruska, J., and Hodge, A. (1964). A Subunit Model for the Tropocollagen Macromolecule. Proc. Natl. Acad. Sci. U.S.A. 51:871–876.
  • Bear, R. (1952). The structure of collagen fibrils. Adv. Protein Chem. 7:69–160.
  • Holmes, D., Gilpin, C., Baldock, C., Ziese, U., Koster, A., and Kadler, K. (2001). Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization. Proc. Natl. Acad. Sci. U.S.A. 98:7307–7312.
  • Chapman, J. (1974). The staining pattern of collagen fibrils. I. An analysis of electron micrographs. Connect. Tissue Res. 2:137–150.
  • Twardowski, T., Fertala, A., Orgel, J., and San Antonio, J. (2007). Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr. Pharm. Des. 13:3608–3621.
  • Di Lullo, G., Sweeney, S., Korkko, J., Ala-Kokko, L., and San Antonio, J. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277:4223–4231.
  • Sweeney, S., Orgel, J., Fertala, A., McAuliffe, J., Turner, K., Di Lullo, G., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forlino, A., Cabral, W., Barnes, A., Marini, J., and Antonio, J. (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283:21187–21197.
  • Perumal, S., Antipova, O., and Orgel, J. (2008). Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. U.S.A. 105:2824–2829.
  • Chapman, J., and Hardcastle, R. (1974). The staining pattern of collagen fibrils. II. A comparison with patterns computer-generated from the amino acid sequence. Connect. Tissue Res. 2:151–159.
  • Rainey, J., and Goh, M. (2002). A statistically derived parameterization for the collagen triple-helix. Protein Sci. 11:2748–2754.
  • Bella, J. (2010). A new method for describing the helical conformation of collagen: dependence of the triple helical twist on amino acid sequence. J. Struct. Biol. 170:377–391.
  • Orgel, J.P.R.O., Eid, A., Antipova, O., Bella, J., and Scott, J.E. (2009). Decorin Core Protein (Decoron) Shape Complements Collagen Fibril Surface Structure and Mediates Its Binding. PLoS ONE 4:e7028.
  • Hulmes, D., Jesior, J., Miller, A., Berthet-Colominas, C., and Wolff, C. (1981). Electron microscopy shows periodic structure in collagen fibril cross sections. Proc. Natl. Acad. Sci. U.S.A. 78:3567–3571.
  • Hulmes, D., Wess, T., Prockop, D., and Fratzl, P. (1995). Radial packing, order, and disorder in collagen fibrils. Biophys. J. 68:1661–1670.
  • Werkmeister, J., Ramshaw, J., and Ellender, G. (1990). Characterization of a monoclonal-antibody against native human type-I collagen. Eur. J. Biochem. 187:439–443.
  • Herr, A.B., and Farndale, R.W. (2009). Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen. J. Biol. Chem. 284:19781–19785.
  • Christopher, J., Swanson, R., and Baldwin, T. (1996). Algorithms for finding the axis of a helix: fast rotational and parametric least-squares methods. Comput. Chem. 20:339–345.
  • Orgel, J., Wess, T., and Miller, A. (2000). The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. Struct. Fold. Des. 8:137–142.
  • Raspanti, M., Alessandrini, A., Gobbi, P., and Ruggeri, A. (1996). Collagen Fibril Surface: TMAFM, FEG-SEM and Freeze- Etching Observations. Microsc. Res. Tech. 35:87–93.
  • Bruckner, P. (2010). Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules. Cell Tissue Res. 339:7–18.
  • Morello, R., Bertin, T.K., Chen, Y., Hicks, J., Tonachini, L., Monticone, M., Castagnola, P., Rauch, F., Glorieux, F.H., Vranka, J., Bächinger, H.P., Pace, J.M., Schwarze, U., Byers, P.H., Weis, M., Fernandes, R.J., Eyre, D.R., Yao, Z., Boyce, B.F., and Lee, B. (2006). CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 127:291–304.
  • Hyde, T.J., Bryan, M.A., Brodsky, B., and Baum, J. (2006). Sequence dependence of renucleation after a Gly mutation in model collagen peptides. J. Biol. Chem. 281:36937.
  • Smethurst, P.A., Onley, D.J., Jarvis, G.E., O'Connor, M.N., Knight, C.G., Herr, A.B., Ouwehand, W.H., and Farndale, R.W. (2007). Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J. Biol. Chem. 282:1296.
  • Kahn, M.L. (2004). Platelet-Collagen Responses: Molecular Basis and Therapeutic Promise. in Seminars in Thrombosis & Hemostasis., 419.
  • Scott, J. (1996). Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 35:8795–8799.
  • Xu, Y., Gurusiddappa, S., Rich, R., Owens, R., Keene, D., Mayne, R., Hook, A., and Hook, M. (2000). Multiple binding sites in collagen type I for the integrins alpha1beta1 and alpha2beta1. J. Biol. Chem. 275:38981–38989.
  • Knight, C.G., Morton, L.F., Peachey, A.R., Tuckwell, D.S., Farndale, R.W., and Barnes, M.J. (2000). The collagen-binding A-domains of integrins alpha1beta1 and alpha2beta1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275:35–40.
  • Rosenblum, G., Van den Steen, P.E., Cohen, S.R., Bitler, A., Brand, D.D., Opdenakker, G., and Sagi, I. (2010). Direct visualization of protease action on collagen triple helical structure. PLoS ONE. 5:e11043.
  • Sternlicht, M. and Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 17:463–516.
  • Rundhaug, J.E. (2005). Matrix metalloproteinases and angiogenesis. J. Cell. Mol. Med. 9:267–285.
  • Trivedi, V., Boire, A., Tchemychev, B., Kaneider, N., Leger, A., O'Callaghan, K., Covic, L., and Kuliopulos, A. (2009). Platelet Matrix Metalloprotease-1 Mediates Thrombogenesis by Activating PAR1 at a Cryptic Ligand Site. Cell. 137:332–343.
  • Pater, A., Sypniewska, G., and Pilecki, O. (2010). Biochemical markers of bone cell activity in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 23:81–86.
  • Villarreal, F., Omens, J., Dillmann, W., Risteli, J., Nguyen, J., and Covell, J. (2004). Early degradation and serum appearance of type I collagen fragments after myocardial infarction. J. Mol. Cell. Cardiol. 36:597–601.
  • Fan, P., Li, M., Brodsky, B., and Baum, J. (1993). Backbone dynamics of (Pro-Hyp-Gly)10 and a designed collagen-like triple-helical peptide by 15N NMR relaxation and hydrogen-exchange measurements. Biochemistry. 32:13299–13309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.