338
Views
41
CrossRef citations to date
0
Altmetric
Research Article

Inner Meniscus Cells Maintain Higher Chondrogenic Phenotype Compared with Outer Meniscus Cells

, , , &
Pages 459-465 | Received 01 Nov 2010, Accepted 06 Feb 2011, Published online: 18 May 2011

REFERENCES

  • Rath, E., and Richmond, J.C. (2000). The menisci: Basic science and advances in treatment. Br. J. Sports Med. 34:252–257.
  • Arnoczky, S.P., and Warren, R.F. (1982). Microvasculature of the human meniscus. Am. J. Sports Med. 10:90–95.
  • Newman, A.P., Daniels, A.U., and Burks, R.T. (1993). Principles and decision making in meniscal surgery. Arthroscopy 9:33–51.
  • McCarty, E.C., Marx, R.G., and DeHaven, K.E. (2002). Meniscus repair: Considerations in treatment and update of clinical results. Clin. Orthop. Relat. Res. 402:122–134.
  • Nakata, K., Shino, K., Hamada, M., Mae, T., Miyama, T., Shinjo, H., Horibe, S., Tada, K., Ochi, T., and Yoshikawa, H. (2001). Human meniscus cell: Characterization of the primary culture and use for tissue engineering. Clin. Orthop. Relat. Res. 391 (Suppl. 391):S208–S218.
  • Verdonk, P.C., Forsyth, R.G., Wang, J., Almqvist, K.F., Verdonk, R., Veys, E.M., and Verbruggen, G. (2005). Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage 13:548–560.
  • Schoenfeld, A.J., Jacquet, R., Lowder, E., Doherty, A., Leeson, M.C., and Landis, W.J. (2009). Histochemical analyses of tissue-engineered human menisci. Connect. Tissue Res. 50:307–314.
  • Upton, M.L., Hennerbichler, A., Fermor, B., Guilak, F., Weinberg, J.B., and Setton, L.A. (2006). Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect. Tissue Res. 47:207–214.
  • Upton, M.L., Chen, J., and Setton, L.A. (2006). Region-specific constitutive gene expression in the adult porcine meniscus. J. Orthop. Res. 24:1562–1570.
  • Nakano, T., Dodd, C.M., and Scott, P.G. (1997). Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J. Orthop. Res. 15:213–220.
  • Cheung, H.S. (1987). Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect. Tissue Res. 16:343–356.
  • Kambic, H.E., and McDevitt, C.A. (2005). Spatial organization of types I and II collagen in the canine meniscus. J. Orthop. Res. 23:142–149.
  • Chevrier, A., Nelea, M., Hurtig, M.B., Hoemann, C.D., and Buschmann, M.D. (2009). Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J. Orthop. Res. 27:1197–1203.
  • Tetsunaga, T., Furumatsu, T., Abe, N., Nishida, K., Naruse, K., and Ozaki, T. (2009). Mechanical stretch stimulates integrin αVβ3-mediated collagen expression in human anterior cruciate ligament cells. J. Biomech. 42:2097–2103.
  • Date, H., Furumatsu, T., Sakoma, Y., Yoshida, A., Hayashi, Y., Abe, N., and Ozaki, T. (2010). GDF-5/7 and bFGF activate integrin α2-mediated cellular migration in rabbit ligament fibroblasts. J. Orthop. Res. 28:225–231.
  • Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y., and Asahara, H. (2005). Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J. Biol. Chem. 280:8343–8350.
  • Furumatsu, T., Nishida, K., Kawai, A., Namba, M., Inoue, H., and Ninomiya, Y. (2002). Human chondrosarcoma secretes vascular endothelial growth factor to induce tumor angiogenesis and stores basic fibroblast growth factor for regulation of its own growth. Int. J. Cancer 97:313–322.
  • Furumatsu, T., Hachioji, M., Saiga, K., Takata, N., Yokoyama, Y., and Ozaki, T. (2010). Anterior cruciate ligament-derived cells have high chondrogenic potential. Biochem. Biophys. Res. Commun. 391:1142–1147.
  • Furumatsu, T., Shukunami, C., Amemiya-Kudo, M., Shimano, H., and Ozaki, T. (2010). Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int. J. Biochem. Cell Biol. 42:148–156.
  • Adesida, A.B., Grady, L.M., Khan, W.S., Millward-Sadler, S.J., Salter, D.M., and Hardingham, T.E. (2007). Human meniscus cells express hypoxia inducible factor-1α and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res. Ther. 9:R69.
  • Tumia, N.S., and Johnstone, A.J. (2004). Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J. Bone Joint Surg. Br. 86:1077–1081.
  • Tumia, N.S., and Johnstone, A.J. (2004). Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am. J. Sports Med. 32:915–920.
  • Tumia, N.S., and Johnstone, A.J. (2009). Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee 16:73–76.
  • Collier, S., and Ghosh, P. (1995). Effects of transforming growth factor β on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 3:127–138.
  • Tanaka, T., Fujii, K., and Kumagae, Y. (1999). Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg. Sports Traumatol. Arthrosc. 7:75–80.
  • Pangborn, C.A., and Athanasiou, K.A. (2005). Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng. 11:1141–1148.
  • Gunja, N.J., Uthamanthil, R.K., and Athanasiou, K.A. (2009). Effects of TGF-β1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials 30:565–573.
  • Wilson, C.G., Nishimuta, J.F., and Levenston, M.E. (2009). Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng. Part A 15:1513–1522.
  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.
  • Furumatsu, T., and Ozaki, T. (2010). Epigenetic regulation in chondrogenesis. Acta Med. Okayama 64:155–161.
  • Shirasawa, S., Sekiya, I., Sakaguchi, Y., Yagishita, K., Ichinose, S., and Muneta, T. (2006). In vitro chondrogenesis of human synovium-derived mesenchymal stem cells: Optimal condition and comparison with bone marrow-derived cells. J. Cell. Biochem. 97:84–97.
  • Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228.
  • Cheng, M.T., Yang, H.W., Chen, T.H., and Lee, O.K. (2009). Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif. 42:448–460.
  • Segawa, Y., Muneta, T., Makino, H., Nimura, A., Mochizuki, T., Ju, Y.J., Ezura, Y., Umezawa, A., and Sekiya, I. (2009). Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J. Orthop. Res. 27:435–441.
  • Weinand, C., Peretti, G.M., Adams, S.B. Jr., Bonassar, L.J., Randolph, M.A., and Gill, T.J. (2006). An allogenic cell-based implant for meniscal lesions. Am. J. Sports Med. 34:1779–1789.
  • Horie, M., Sekiya, I., Muneta, T., Ichinose, S., Matsumoto, K., Saito, H., Murakami, T., and Kobayashi, E. (2009). Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells 27:878–887.
  • Murphy, J.M., Fink, D.J., Hunziker, E.B., and Barry, F.P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48:3464–3474.
  • Dutton, A.Q., Choong, P.F., Goh, J.C., Lee, E.H., and Hui, J.H. (2010). Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J. Bone Joint Surg. Br. 92:169–175.
  • Zhang, H., Leng, P., and Zhang, J. (2009). Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin. Orthop. Relat. Res. 467:3165–3174.
  • Lee, I.C., Wang, J.H., Lee, Y.T., and Young, T.H. (2007). Development of a useful technique to discriminate anterior cruciate ligament cells and mesenchymal stem cells – the application of cell electrophoresis. J. Biomed. Mater. Res. 82A:230–237.
  • Furumatsu, T., and Asahara, H. (2010). Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med. Okayama 64:351–357.
  • Brent, A.E., Braun, T., and Tabin, C.J. (2005). Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development 132:515–528.
  • Kawamura, S., Lotito, C., and Rodeo, S.A. (2003). Biomechanics and healing response of the meniscal tissue. Op. Tech. Sports Med. 11:68–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.