378
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Differentiation Capacity of Human Chondrocytes Embedded in Alginate Matrix

, , , , , , & show all
Pages 503-511 | Received 08 Nov 2010, Accepted 31 May 2011, Published online: 25 Jul 2011

References

  • Tallheden, T., Brittberg, M., Peterson, L., and Lindahl, A. (2006). Human articular chondrocytes-plasticity and differentiation potential. Cells Tissues Organs. 184:55–67.
  • Vogt, S., Braun, S., and Imhoff, A.B. (2007). Stage oriented surgical cartilage therapy. Current situation. Z. Rheumatol. 66:493–503.
  • Stokes, D.G., Liu, G., Dharmavaram, R., Hawkins, D., Piera-Velazquez, S., and Jimenez, S.A. (2001). Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem J. 360:461–470.
  • Barbero, A., and Martin, I. (2007). Human articular chondrocytes culture. Methods Mol. Med. 140:237–247.
  • Benya, P.D., and Shaffer, J.D. (1982). Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 30:215–224.
  • Bonaventure, J., Kadhom, N., Cohen-Solal, L., Ng, K.H., Bourguignon, J., Lasselin, C., and Freisinger, P. (1994). Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp. Cell Res. 212:97–104.
  • Ghidoni, I., Chlapanidas, T., Bucco, M., Crovato, F., Marazzi, M., Vigo, D., Torre, M.L., and Faustini, M. (2008). Alginate cell encapsulation: New advances in reproduction and cartilage regenerative medicine. Cytotechnology. 58:49–56.
  • Chubinskaya, S., Hakimiyan, A., Pacione, C., Yanke, A., Rappoport, L., Aigner, T., Rueger, D.C., and Loeser, R.F. (2007). Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads. Osteoarthritis Cartilage. 15:421–430.
  • Tyler, J.A. (1989). Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J. 260:543–548.
  • Morales, T.I. (2002). The insulin-like growth factor binding proteins in uncultured human cartilage: Increases in insulin-like growth factor binding protein 3 during osteoarthritis. Arthritis. Rheum. 46:2358–2367.
  • van Osch, G.J., Mandl, E.W., Marijnissen, W.J., van der Veen, S.W., Verwoerd-Verhoef, H.L., and Verhaar, J.A. (2002). Growth factors in cartilage tissue engineering. Biorheology. 39:215–220.
  • Giannoni, P., and Cancedda, R. (2006). Articular chondrocyte culturing for cell-based cartilage repair: Needs and perspectives. Cells Tissues Organs. 184:1–15.
  • van Osch, G.J., van der Veen, S.W., Buma, P., and Verwoerd-Verhoef, H.L. (1998). Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix. Matrix Biol. 17:413–424.
  • van Osch, G.J., van den Berg, W.B., Hunziker, E.B., and Hauselmann, H.J. (1998). Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 6:187–195.
  • Takano, T., Takigawa, M., and Suzuki, F. (1985). Stimulation by glucocorticoids of the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. J. Biochem. 97:1093–1100.
  • Young, H.E., Ceballos, E.M., Smith, J.C., Mancini, M.L., Wright, R.P., Ragan, B.L., Bushell, I., and Lucas, P.A. (1993). Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. Vitro Cell. Dev. Biol. Anim. 29A:723–736.
  • Caplan, A.I., Elyaderani, M., Mochizuki, Y., Wakitani, S., and Goldberg, V.M. (1997). Principles of cartilage repair and regeneration. Clin. Orthop. Relat. Res. 342:254–269.
  • Lennon, D.P., Haynesworth, S.E., Young, R.G., Dennis, J.E., and Caplan, A.I. (1995). A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell. Res. 219:211–222.
  • Alsalameh, S., Amin, R., Gemba, T., and Lotz, M. (2004). Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50:1522–1532.
  • Fickert, S., Fiedler, J., and Brenner, R.E. (2004). Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res. Ther. 6:R422–R432.
  • Cicione, C., Diaz-Prado, S., Muinos-Lopez, E., Hermida-Gomez, T., and Blanco, F.J. (2010). Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: Donor influence on chondrogenesis. Differentiation. 80:155–165.
  • Albrecht, C., Schlegel, W., Eckl, P., Jagersberger, T., Sadeghi, K., Berger, A., Vecsei, V., and Marlovits, S. (2009). Alterations in CD44 isoforms and HAS expression in human articular chondrocytes during the de- and re-differentiation processes. Int. J. Mol. Med. 23:253–259.
  • Barry, F.P., Boynton, R.E., Haynesworth, S., Murphy, J.M., and Zaia, J. (1999). The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265:134–139.
  • Majumdar, M.K., Banks, V., Peluso, D.P., and Morris, E.A. (2000). Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J. Cell. Physiol. 185:98–106.
  • Arai, F., Ohneda, O., Miyamoto, T., Zhang, X.Q., and Suda, T. (2002). Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J. Exp. Med. 195:1549–1563.
  • Knudson, C.B. (2003). Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res. C Embryo Today. 69:174–196.
  • Longobardi, L., O’Rear, L., Aakula, S., Johnstone, B., Shimer, K., Chytil, A., Horton, W.A., Moses, H.L., and Spagnoli, A. (2006). Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21:626–636.
  • Fukumoto, T., Sperling, J.W., Sanyal, A., Fitzsimmons, J.S., Reinholz, G.G., Conover, C.A., and O’Driscoll, S.W. (2003). Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage. 11:55–64.
  • Loeser, R.F., Pacione, C.A., and Chubinskaya, S. (2003). The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum. 48:2188–2196.
  • Dreier, R. (2010). Hypertrophic differentiation of chondrocytes in osteoarthritis: The developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 12:216.
  • Pfander, D., Swoboda, B., and Kirsch, T. (2001). Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am. J. Pathol. 159:1777–1783.
  • Ballock, R.T., Heydemann, A., Wakefield, L.M., Flanders, K.C., Roberts, A.B., and Sporn, M.B. (1993). TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: Regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev. Biol. 158:414–429.
  • Bohme, K., Winterhalter, K.H., and Bruckner, P. (1995). Terminal differentiation of chondrocytes in culture is a spontaneous process and is arrested by transforming growth factor-beta 2 and basic fibroblast growth factor in synergy. Exp. Cell. Res. 216:191–198.
  • Grogan, S.P., Miyaki, S., Asahara, H., D’Lima, D.D., and Lotz, M.K. (2009). Mesenchymal progenitor cell markers in human articular cartilage: Normal distribution and changes in osteoarthritis. Arthritis Res. Ther. 11:R85.
  • Yaeger, P.C., Masi, T.L., de Ortiz, J.L., Binette, F., Tubo, R., and McPherson, J.M. (1997). Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp. Cell. Res. 237:318–325.
  • Chow, G., Knudson, C.B., Homandberg, G., and Knudson, W. (1995). Increased expression of CD44 in bovine articular chondrocytes by catabolic cellular mediators. J. Biol. Chem. 270:27734–27741.
  • Gagne, T.A., Chappell-Afonso, K., Johnson, J.L., McPherson, J.M., Oldham, C.A., Tubo, R.A., Vaccaro, C., and Vasios, G.W. (2000). Enhanced proliferation and differentiation of human articular chondrocytes when seeded at low cell densities in alginate in vitro. J. Orthop. Res. 18:882–890.
  • Rudert, M., and Wirth, C.J. (1998). Knorpelregeneration und Knorpelersatz. Orthopäde. 27:309–321.
  • Verschure, P.J., Marle, J.V., Joosten, L.A., Helsen, M.M., Lafeber, F.P., and Berg, W.B. (1996). Localization of insulin-like growth factor-1 receptor in human normal and osteoarthritic cartilage in relation to proteoglycan synthesis and content. Br. J. Rheumatol. 35:1044–1055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.