1,343
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Tissue-Engineering Strategies for the Tendon/Ligament-to-Bone Insertion

, , , &
Pages 95-105 | Received 01 Sep 2011, Accepted 13 Dec 2011, Published online: 20 Dec 2011

REFERENCES

  • Praemer, A., Furner, S., and Rice, D. (eds.) (1992). Musculoskeletal Conditions in the United States. Park Ridge, IL: American Academy of Orthopaedic Surgeons.
  • Thomopoulos, S., Williams, G.R., Gimbel, J.A., Favata, M., and Soslowsky, L.J. (2003). Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res. 21(3):413–419.
  • Thomopoulos, S., Marquez, J.P., Weinberger, B., Birman, V., and Genin, G.M. (2006). Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J. Biomech. 39(10):1842–1851.
  • Genin, G.M., Kent, A., Birman, V., Wopenka, B., Pasteris, J.D., Marquez, P.J., and Thomopoulos, S. (2009). Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys. J. 97(4):976–985.
  • Liu, Y., Birman, V., Chen, C., Thomopoulos, S., and Genin, G.M. (2011). Mechanisms of bimaterial attachment at the interface of tendon to bone. J. Eng. Mater. Technol. 133(1):pii: 011006.
  • Galatz, L.M., Rothermich, S.Y., Zaegel, M., Silva, M.J., Havlioglu, N., and Thomopoulos, S. (2005). Delayed repair of tendon to bone injuries leads to decreased biomechanical properties and bone loss. J. Orthop. Res. 23(6):1441–1447.
  • Newsham-West, R., Nicholson, H., Walton, M., and Milburn, P. (2007). Long-term morphology of a healing bone–tendon interface: A histological observation in the sheep model. J. Anat. 210(3):318–327.
  • Silva, M.J., Thomopoulos, S., Kusano, N., Zaegel, M.A., Harwood, F.L., Matsuzaki, H., Havlioglu, N., Dovan, T.T., Amiel, D., and Gelberman, R.H. (2006). Early healing of flexor tendon insertion site injuries: Tunnel repair is mechanically and histologically inferior to surface repair in a canine model. J. Orthop. Res. 24(5):990–1000.
  • Rodeo, S.A., Arnoczky, S.P., Torzilli, P.A., Hidaka, C., and Warren, R.F. (1993). Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J. Bone Joint Surg. Am. 75(12):1795–1803.
  • Galatz, L.M., Ball, C.M., Teefey, S.A., Middleton, W.D., and Yamaguchi, K. (2004). The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J. Bone Joint Surg. Am. 86(2):219–224.
  • Corry, I.S., Webb, J.M., Clingeleffer, A.J., and Pinczewski, L.A. (1999). Arthroscopic reconstruction of the anterior cruciate ligament. Am. J. Sports Med. 27(4):444–454.
  • Altman, G., Horan, R., Martin, I., Farhadi, J., Stark, P., Volloch, V., Vunjak-Novakovic, G., Richmond, J., and Kaplan, D.L. (2002). Cell differentiation by mechanical stress. FASEB J. 16(2):270–272.
  • Yang, P.J., and Temenoff, J.S. (2009). Engineering orthopedic tissue interfaces. Tissue Eng. B Rev. 15(2):127–141.
  • Spalazzi, J.P., Doty, S.B., Moffat, K.L., Levine, W.N., and Lu, H.H. (2006). Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 12(12):3497–3508.
  • Spalazzi, J.P., Vyner, M.C., Jacobs, M.T., Moffat, K.L., and Lu, H. (2008). Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage. Clin. Orthop. Relat. Res. 466:1938–1948.
  • Li, K.W., Lindsey, D.P., Wagner, D.R., Giori, N.J., Schurman, D.J., Goodman, S.B., Smith, R.L., Carter, D.R., and Beaupre, G.S. (2006). Gene regulation ex vivo within a wrap-around tendon. Tissue Eng. 12(9):2611–2618.
  • Li, X., Xie, J., Lipner, J., Yuan, X., Thomopoulos, S., and Xia, Y. (2009). Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9(7):2763–2768.
  • Benjamin, M., Kumai, T., Milz, S., Boszczyk, B.M., Boszczyk, A.A., and Ralphs, J.R. (2002). The skeletal attachment of tendons–tendon “entheses”. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133(4):931–945.
  • Benjamin, M., Evans, E.J., and Copp, L. (1986). The histology of tendon attachments to bone in man. J. Anat. 149:89–100.
  • Shaw, H.M., and Benjamin, M. (2007). Structure–function relationships of entheses in relation to mechanical load and exercise. Scand. J. Med. Sci. Sports 17(4):303–315.
  • Kumagai, J., Sarkar, K., Uhthoff, H.K., Okawara, Y., and Ooshima, A. (1994). Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J. Anat. 182(2):279–284.
  • Galatz, L., Rothermich, S., VanderPloeg, K., Petersen, B., Sandell, L., and Thomopoulos, S. (2007). Development of the supraspinatus tendon-to-bone insertion: Localized expression of extracellular matrix and growth factor genes. J. Orthop. Res. 25(12):1621–1628.
  • Liu, Y.X., Thomopoulos, S., Birman, V., Lee, J.S., and Genin, G.M. (2011). Bi-material attachment through a soft tissue interfacial system. Mech. Mater. 44(1):83–92.
  • Stouffer, D.C., Butler, D.L., and Hosny, D. (1985). The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J. Biomech. Eng. 107(2):158–165.
  • Thomopoulos, S., Williams, G.R., and Soslowsky, L.J. (2003). Tendon to bone healing: Differences in biomechanical, structural, and compositional properties due to a range of activity levels. J. Biomech. Eng. 125(1):106–113.
  • Soslowsky, L.J., Carpenter, J.E., Bucchieri, J.S., and Flatow, E.L. (1997). Biomechanics of the rotator cuff. Orthop. Clin. North Am. 28(1):17–30.
  • Yamaguchi, K., Ditsios, K., Middleton, W.D., Hildebolt, C.F., Galatz, L.M., and Teefey, S.A. (2006). The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J. Bone Joint Surg. Am. 88(8):1699–1704.
  • Lehman, C., Cuomo, F., Kummer, F.J., and Zuckerman, J.D. (1995). The incidence of full thickness rotator cuff tears in a large cadaveric population. Bull. Hosp. Jt. Dis. 54(1):30–31.
  • Vitale, M.A., Vitale, M.G., Zivin, J.G., Braman, J.P., Bigliani, L.U., and Flatow, E.L. (2007). Rotator cuff repair: An analysis of utility scores and cost-effectiveness. J. Shoulder Elbow Surg. 16(2):181–187.
  • Harryman, D.T., Mack, L.A., Wang, K.Y., Jackins, S.E., Rischardson, M.L., and Matsen, III., F.A. (1991). Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J. Bone Joint Surg. 73(7):982–989.
  • Neri, B.R., Chan, K.W., and Kwon, Y.W. (2009). Management of massive and irreparable rotator cuff tears. J. Shoulder Elbow Surg. 18(5):808–818.
  • Brown, J.C.H., and Carson, E.W. (1999). Revision anterior cruciate ligament surgery. Clin. Sports Med. 18(1):109–171.
  • Keays, S.L., Bullock-Saxton, J.E., Keays, A.C., Newcombe, P.A., and Bullock, M.I.A. (2007). 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction. Am. J. Sports Med. 35(5):729–739.
  • Weiler, A., Peine, R., Pashmineh-Azar, A., Abel, C., Südkamp, N.P., and Hoffmann, R.F.G. (2002). Tendon healing in a bone tunnel. Part I. Biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):113–123.
  • Zantop, T., Weimann, A., Schmidtko, R., Herbort, M., Raschke, M.J., and Petersen, W. (2006). Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: In vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. Arthroscopy 22(11):1204–1210.
  • Monaco, E., Labianca, L., Speranza, A., Agrò, A., Camillieri, G., D’Arrigo, C., and Ferretti, A. (2010). Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J. Orthop. Sci. 15(1):125–131.
  • Smith, C., Young, I., and Kearney, J. (1996). Mechanical properties of tendons: Changes with sterilization and preservation. J. Biomech. Eng. 118(1):56–61.
  • Cordrey, L.J., McCorkle, H., and Hilton, E. (1963). A comparative study of fresh autogenous and preserved homogenous tendon grafts in rabbits. J. Bone Joint Surg. Br. 45–B(1):182–195.
  • Spalazzi, J.P., Dagher, E., Doty, S.B., Guo, X.E., Rodeo, S.A., and Lu, H.H. (2008). In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J. Biomed. Mater. Res. A 86(1):1–12.
  • Jinjin, M., Kristen, G., Michael, S., Tatiana, K., Lisa, L., and Ellen, M.A. (2009). Morphological and functional characteristics of three-dimensional engineered bone-ligament-bone constructs following implantation. J. Biomech. Eng. 131(10):101017.
  • Wang, I.N.E., Shan, J., Choi, R., Oh, S., Kepler, C.K., Chen, F.H., and Lu, H.H. (2007). Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J. Orthop. Res. 25(12):1609–1620.
  • Dormer, N.H., Berkland, C.J., and Detamore, M.S. (2010). Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann. Biomed. Eng. 38(6):2121–2141.
  • Harley, B.A., Lynn, A.K., Wissner-Gross, Z., Bonfield, W., Yannas, I.V., and Gibson, L.J. (2010). Design of a multiphase osteochondral scaffold. II. Fabrication of a mineralized collagen-glycosaminoglycan scaffold. J. Biomed. Mater. Res. A 92(3):1066–1077.
  • Harley, B.A., Lynn, A.K., Wissner-Gross, Z., Bonfield, W., Yannas, I.V., and Gibson, L.J. (2010). Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J. Biomed. Mater. Res. A 92(3):1078–1093.
  • Lynn, A.K., Best, S.M., Cameron, R.E., Harley, B.A., Yannas, I.V., Gibson, L.J., and Bonfield, W. (2010). Design of a multiphase osteochondral scaffold. I. Control of chemical composition. J. Biomed. Mater. Res. A 92(3):1057–1065.
  • Phillips, J.E., Burns, K.L., Le Doux, J.M., Guldberg, R.E., and Garcia, A.J. (2008). Engineering graded tissue interfaces. Proc. Natl. Acad. Sci. USA 105(34):12170–12175.
  • Shi, J., Wang, L., Zhang, F., Li, H., Lei, L., Liu, L., and Chen, Y. (2010). Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Appl. Mater. Interfaces 2(4):1025–1030.
  • Wang, X., Wenk, E., Zhang, X., Meinel, L., Vunjack-Novakovic, G., and Kaplan, D. (2009). Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control. Release 134:81–90.
  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12):4279–4295.
  • Guilak, F., Awad, H., Fermor, B., Leddy, H., and Gimble, J. (2004). Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41(3–4):389–399.
  • Kern, S., Eichler, H., Steove, J., Klüter, H., and Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24(5):1294–1301.
  • Lima, E.G., Mauck, R.L., Han, S.H., Park, S., Ng, K.W., Ateshian, G.A., and Hung, C.T. (2004). Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590.
  • Hung, C.T., Lima, E.G., Mauck, R.L., Taki, E., LeRoux, M.A., Lu, H.H., Stark, R.G., Guo, X.E., and Ateshian, G.A. (2003). Anatomically shaped osteochondral constructs for articular cartilage repair. J. Biomech. 36(12):1853–1864.
  • Jiang, J., Nicoll, S.B., and Lu, H.H. (2005). Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem. Biophys. Res. Commun. 338(2):762–770.
  • Suo, Z., and Hutchinson, J.W. (1990). Interface crack between two elastic layers. Int. J. Fracture 43(1):1–18.
  • Beuth, J.L., and Narayan, S.H. (1996). Residual stress-driven delamination in deposited multi-layers. Int. J. Solids Struct. 33(1):65–78.
  • Kuo, C.K., Petersen, B.C., and Tuan, R.S. (2008). Spatiotemporal protein distribution of TGF-βs, their receptors, and extracellular matrix molecules during embryonic tendon development. Dev. Dyn. 237(5):1477–1489.
  • Benjamin, M., and Ralphs, J.R. (1998). Fibrocartilage in tendons and ligaments - An adaptation to compressive load. J. Anat. 193:481–494.
  • Docheva, D., Hunziker, E.B., Fassler, R., and Brandau, O. (2005). Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol. Cell. Biol. 25(2):699–705.
  • Shukunamai, C., Takimoto, A., Oro, M., and Hiraki, Y. (2006). Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev. Biol. 298:237–247.
  • McCullen, S.D., Zhu, Y., Bernacki, S.H., Narayan, R.J., Pourdeyhimi, B., Gorga, R.E., and Loboa, E.G. (2009). Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed. Mater. 4(3):1971–1981.
  • Marino, G., Rosso, F., Cafiero, G., Tortora, C., Moraci, M., Barbarisi, M., and Barbarisi, A. (2009). β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: In vitro study. J. Mater. Sci. Mater. Med. 21(1):353–363.
  • Martin, T.A., Caliari, S.R., Williford, P.D., Harley, B.A., and Bailey, R.C. (2011). The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography. Biomaterials 32(16):3949–3957.
  • Matyas, J.R., Anton, M.G., Shrive, N.G., and Frank, C.B. (1995). Stress governs tissue phenotype at the femoral insertion of the rabbit MCL. J. Biomech. 28(2):147–157.
  • Koob, T.J., and Vogel, K. (1987). Proteoglycan synthesis in organ cultures from regions of bovine tendon subjected to different mechanical forces. Biochem. J. 246:589–598.
  • Evanko, S.P., and Vogel, K.G. (1993). Proteoglycan synthesis in fetal tendon is differentially regulated by cyclic compression in vitro. Arch. Biochem. Biophys. 307(1):153–164.
  • Woo, S., An, K., Frank, C., Livesay, G., Ma, C., Zeminski, J., Wayne, J., and Myers, B. (2000). Anatomy, biology, and biomechanics of tendon and ligament. Orthop. Basic Sci. 581–616.
  • Kuo, C.K., and Tuan, R.S. (2008). Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng. A 14(10):1615–1627.
  • Juncosa-Melvin, N., Maitlin, K.S., Holdcraft, R.W., Nirmalanandhan, V., and Butler, D.L. (2007). Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 13(6):1219–1226.
  • Erickson, I.E., Huang, A.H., Chung, C., Li, R.T., Burdick, J.A., and Mauck, R.L. (2009). Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. A 15(5):1041–1052.
  • Huang, C.-Y. C., Hagar, K.L., Frost, L.E., Sun, Y., and Cheung, H.S. (2004). Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323.
  • Peter, A., Detlef, S., Martin, A., Bernd, K., Carsten, E., Reiner, H., Bernd, F., Michael, N., Carsten, N., and Richard, K. (2004). Cyclic mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41(3):335–346.
  • Mauck, R.L., Byers, B.A., Yuan, X., and Tuan, R.S. (2007). Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model Mechanobiol. 6:113–125.
  • Terraciano, V., Hwang, N., Moroni, L., Park, H.B., Zhang, Z., Mizrahi, J., Seliktar, D., and Elisseeff, J. (2007). Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25(11):2730–2738.
  • Li, Z., Yao, S.-J., Alini, M., and Stoddart, M.J. (2009). Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Eng. A 16(2):575–584.
  • Thomopoulos, S., Das, R., Birman, V., Smith, L., Ku, K., Elson, E.L., Pryse, K.M., Marquez, J.P., and Genin, G.M. (2010). Fibrocartilage tissue engineering: The role of the stress environment on cell morphology and matrix expression. Tissue Eng. A 17(7–8):1039–1053.
  • Thorpe, S., Buckley, C., Vinardell, T., O’Brien, F., Campbell, V., and Kelly, D. (2009). The response of bone marrow-derived mesenchymal stem cells to dynamic compression following TGF-β3 induced chondrogenic differentiation. Ann. Biomed. Eng. 38(9):2896–2909.
  • Connelly, J.T., Vanderploeg, E.J., Mouw, J.K., Wilson, C.G., and Levenston, M.E. (2010). Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs. Tissue Eng. A 16(6):1913–1923.
  • Janmey, P.A., and Weitz, D.A. (2004). Dealing with mechanics: Mechanisms of force transduction in cells. Trends Biochem. Sci. 29(7):364–370.
  • Lee, S.E., Kamm, R.D., and Mofrad, M.R. (2007). Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40(9):2096–2106.
  • del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., and Sheetz, M.P. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323(5914):638–641.
  • Nekouzadeh, A., Pryse, K.M., Elson, E.L., and Genin, G.M. (2008). Stretch-activated force shedding, force recovery, and cytoskeletal remodeling in contractile fibroblasts. J. Biomech. 41(14):2964–2971.
  • Maniotis, A.J., Chen, C.S., and Ingber, D.E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94(3):849–854.
  • Kuo, C.K., and Tuan, R.S. (2003). Tissue engineering with mesenchymal stem cells. IEEE Eng. Med. Biol. Mag. 22(5):51–56.
  • Gimble, J.M. (2003). Adipose tissue-derived therapeutics. Expert Opin. Biol. Ther. 3(5):705–713.
  • Mizuno, H. (2009). Adipose-derived stem cells for tissue repair and regeneration: Ten years of research and a literature review. J. Nippon Med. Sch. 76(2):10.
  • Niemeyer, P., Kornacker, M., Mehlhorn, A., Seckinger, A., Vohrer, J., Schmal, H., Kasten, P., Eckstein, V., Südkamp, N.P., and Krause, U. (2007). Comparison of immunological properties of bone marrow stromal cells and adipose tissue derived stem cells before and after osteogenic differentiation in vitro. Tissue Eng. 13(1):111–121.
  • Grimes, B.R., Steiner, C.M., Merfeld-Clauss, S., Traktuev, D.O., Smith, D., Reese, A., Breman, A.M., Thurston, V.C., Vance, G.H., Johnstone, B.H., Slee, R.B., and March, K.L. (2009). Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cells Dev. 18(5):717–724.
  • James, R., Kumbar, S.G., Laurencin, C.T., Balian, G., and Chhabra, A.B. (2011). Tendon tissue engineering: Adipose-derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems. Biomed. Mater. 6(2):025011.
  • Park, A., Hogan, M.V., Kesturu, G.S., James, R., Balian, G., and Chhabra, A.B. (2010). Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendon-specific markers. Tissue Eng. A 16(9):2941–2951.
  • Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M., and Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222.
  • Erisken, C., Kalyon, D.M., Wang, H., Ornek-Ballanco, C., and Xu, J. (2011). Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Eng. A 17(9–10):1239–1252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.