185
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Synthetic Peptide-conjugated Titanium Alloy for Enhanced Bone Formation In Vivo

, , , &
Pages 359-365 | Received 28 Nov 2011, Accepted 31 Jan 2012, Published online: 15 Mar 2012

References

  • Lee, Y.K., Ha, Y.C., Yoo, J.J., Koo, K.H., Yoon, K.S., and Kim, H.J. (2010). Alumina-on-alumina total hip arthroplasty: A concise follow-up, at a minimum of 10 years, of a previous report. J. Bone Joint Surg. Am. 92:1715–1719.
  • Karoussis, I.K., Bragger, U., Salvi, G.E., Burgin, W., and Lang, N.P. (2004). Effect of implant design on survival and success rates of titanium oral implants: A 10-year prospective cohort study of the ITI Dental Implant System. Clin. Oral. Implants Res. 15:8–17.
  • Davies, J.E. (2007). Bone bonding at natural and biomaterial surfaces. Biomaterials 28:5058–5067.
  • Davies, J.E. (2003). Understanding peri-implant endosseous healing. J. Dent. Educ. 67:932–949.
  • Marco, F., Milena, F., Gianluca, G., and Vittoria, O. (2005). Peri-implant osteogenesis in health and osteoporosis. Micron 36:630–644.
  • Franchi, M., Fini, M., Martini, D., Orsini, E., Leonardi, L., Ruggeri, A., Giavaresi, G., and Ottani, V. (2005). Biological fixation of endosseous implants. Micron 36:665–671.
  • Li, D., Ferguson, S.J., Beutler, T., Cochran, D.L., Sittig, C., Hirt, H.P., and Buser, D. (2002). Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J. Biomed. Mater. Res. 60:325–332.
  • Boyan, B.D., Lossdorfer, S., Wang, L., Zhao, G., Lohmann, C.H., Cochran, D.L., and Schwartz, Z. (2003). Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur. Cell Mater. 6:22–27.
  • Eriksson, C., Broberg, M., Nygren, H., and Oster, L. (2003). Novel in vivo method for evaluation of healing around implants in bone. J. Biomed. Mater. Res. A 66:662–668.
  • Sculco, T.P., and Boettner, F. (2006). Minimally invasive total hip arthroplasty: The posterior approach. Instr. Course Lect. 55:205–214.
  • Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., and Missirlis, Y.F. (2001). Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 22:1241–1251.
  • Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., and Missirlis, Y.F. (2001). Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22:87–96.
  • Ito, K., Nanba, K., Nishida, T., Sato, H., and Murai, S. (1998). Comparison of osseointegration between hydroxyapatite-coated and uncoated threaded titanium dental implants placed into surgically-created bone defect in rabbit tibia. J. Oral Sci. 40:37–41.
  • Sul, Y.T. (2003). The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24:3893–3907.
  • Celeste, A.J., Iannazzi, J.A., Taylor, R.C., Hewick, R.M., Rosen, V., Wang, E.A., and Wozney, J.M. (1990). Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc. Natl. Acad. Sci. USA 87:9843–9847.
  • Reddi, A.H. (1998). Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol. 16:247–252.
  • Koempel, J.A., Patt, B.S., O’Grady, K., Wozney, J., and Toriumi, D.M. (1998). The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J. Biomed. Mater. Res. 41:359–363.
  • Schmitt, J.M., Hwang, K., Winn, S.R., and Hollinger, J.O. (1999). Bone morphogenetic proteins: An update on basic biology and clinical relevance. J. Orthop. Res. 17:269–278.
  • Seol, Y.J., Park, Y.J., Lee, S.C., Kim, K.H., Lee, J.Y., Kim, T.I., Lee, Y.M., Ku, Y., Rhyu, I.C., Han, S.B., and Chung C.P. (2006). Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J. Biomed. Mater. Res. A 77:599–607.
  • Lee, J.Y., Choo, J.E., Choi, Y.S., Suh, J.S., Lee, S.J., Chung, C.P., and Park, Y.J. (2009). Osteoblastic differentiation of human bone marrow stromal cells in self-assembled BMP-2 receptor-binding peptide-amphiphiles. Biomaterials 30:3532–3541.
  • Lee, J.Y., Choo, J.E., Park, H.J., Park, J.B., Lee, S.C., Lee, S.J., Park, Y.J., and Chung, C.P. (2008). Synthetic peptide-coated bone mineral for enhanced osteoblastic activation in vitro and in vivo. J. Biomed. Mater. Res. A 87:688–697.
  • Park, J.B., Lee, J.Y., Park, H.N., Seol, Y.J., Park, Y.J., Rhee, S.H., Lee, S.C., Kim, K.H., Kim, T.I., Lee, Y.M., Ku Y., Rhyu I.C., Han S.B., and Chung C.P. (2007). Osteopromotion with synthetic oligopeptide-coated bovine bone mineral in vivo. J. Periodontol. 78:157–163.
  • Donath, K., and Breuner, G. (1982). A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique. J. Oral. Pathol. 11:318–326.
  • Kirsch, T., Sebald, W., and Dreyer, M.K. (2000). Crystal structure of the BMP-2-BRIA ectodomain complex. Nat. Struct. Biol. 7:492–496.
  • Nickel, J., Dreyer, M.K., Kirsch, T., and Sebald, W. (2001). The crystal structure of the BMP-2:BMPR-IA complex and the generation of BMP-2 antagonists. J. Bone Joint Surg. Am. 83-A(Suppl. 1):S7–S14.
  • Saito, A., Suzuki, Y., Ogata, S., Ohtsuki, C., and Tanihara, M. (2003). Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim. Biophys. Acta. 1651:60–67.
  • Callaghan, J.J., Rosenberg, A.G., and Rubash, H.E. (2007). The Adult Hip, 2nd ed., 196 p. Philadelphia: Lippincott Williams & Wilkins.
  • D’Lima, D.D., Lemperle, S.M., Chen, P.C., Holmes, R.E., and Colwell, Jr., C.W. (1998). Bone response to implant surface morphology. J. Arthroplasty 13:928–934.
  • Sahin, S., Akagawa, Y., Wadamoto, M., and Sato, Y. (1996). The three-dimensional bone interface of an osseointegrated implant. II: A morphometric evaluation after three months of loading. J. Prosthet. Dent. 76:176–180.
  • Hayashi, K., Uenoyama, K., Matsuguchi, N., and Sugioka, Y. (1991). Quantitative analysis of in vivo tissue responses to titanium-oxide- and hydroxyapatite-coated titanium alloy. J. Biomed. Mater. Res. 25:515–523.
  • Deporter, D.A., Watson, P.A., Pilliar, R.M., Chipman, M.L., and Valiquette, N. (1990). A histological comparison in the dog of porous-coated vs. threaded dental implants. J. Dent. Res. 69:1138–1145.
  • Khanuja, H.S., Vakil, J.J., Goddard, M.S., and Mont, M.A. (2011). Cementless femoral fixation in total hip arthroplasty. J. Bone Joint Surg. Am. 93:500–509.
  • Zweymuller, K.A., Lintner, F.K., and Semlitsch, M.F. (1988). Biologic fixation of a press-fit titanium hip joint endoprosthesis. Clin. Orthop. Relat. Res. 235:195–206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.