419
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Beneficial Regulation of Fibrillar Collagens, Heat Shock Protein-47, Elastin Fiber Components, Transforming Growth Factor-β1, Vascular Endothelial Growth Factor and Oxidative Stress Effects by Copper in Dermal Fibroblasts

, , , , , , & show all
Pages 373-378 | Received 10 Nov 2011, Accepted 07 Feb 2012, Published online: 15 Mar 2012

References

  • Philips, N., Samuel, M., Arena, R., Chen, Y., Conte, J., Natrajan, P., Haas, G., and Gonzalez, S. (2010). Direct inhibition of elastase and matrixmetalloproteinases, and stimulation of biosynthesis of fibrillar collagens, elastin and fibrillins by xanthohumol. J. Cosmet. Sci. 61: 125–132.
  • Philips, N., Conte, J., Chen, Y., Natrajan, P., Taw, M., Keller, T., Givant, J., Tuason, M., Dulaj, L., Leonardi, D., and Gonzalez, S. (2009). Beneficial regulation of matrixmetalloproteinases and its inhibitors, fibrillar collagens and transforming growth factor-β by P. leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Arch. Dermatol. Res. 301:487–495.
  • Philips, N., Keller, T., Hendrix, C., Hamilton, S., Arena, R., Tuason, M., and Gonzalez, S. (2007). Regulation of the extracellular matrix remodeling by lutein in dermal fibroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts. Arch. Dermatol. Res. 299:373–379.
  • Philips, N., Hwang, H., Chauhan, S., Leonardi, D., and Gonzalez, S. (2010). Stimulation of cell proliferation, and expression of matrixmetalloproteinase-1 and interluekin-8 genes in dermal fibroblasts by copper. Connect. Tissue Res. 51:224–229.
  • Philips, N., Keller, T., and Gonzalez, S. (2004). TGF-β like regulation of matrix metalloproteinases by anti transforming growth factor-β and anti transforming growth factor-β1 antibodies in dermal fibroblasts: Implications to wound healing. Wound Rep. 12:53–59.
  • Ishida, Y., Kubota, H., Yamamoto, A., Kitamura, A., Bächinger, H.P., and Nagata, K. (2006). Type I collagen in Hsp47-null cells is aggregated in endoplasmic reticulum and deficient in N-propeptide processing and fibrillogenesis. Mol. Biol. Cell. 17:2346–2355.
  • Ogawa, Y., Razzaque, M.S., Kameyama, K., Hasegawa, G., Shimmura, S., Kawai, M., Okamoto, S., Ikeda, Y., Tsubota, K., Kawakami, Y., and Kuwana, M. (2007). Role of heat shock protein 47, a collagen-binding chaperone, in lacrimal gland pathology in patients with cGVHD. Invest. Ophthalmol. Vis. Sci. 48:1079–1086.
  • Harris, E.D., Rayton, J.K., Balthrop, J.E., DiSilvestro, R.A., and Garcia-de-Quevedo, M. (1980). Copper and the synthesis of elastin and collagen. Ciba Found. Symp. 79:163–182.
  • Uitto, J., Fazio, M.J., and Olsen, D. (1989). Molecular mechanisms of cutaneous aging. J. Am. Acad. Dermatol. 21:614–622.
  • Mori, Y., Hatamochi, A., Arakawa, M., and Ueki, H. (1998). Reduced expression of mRNA for transforming growth factor-beta (TGF beta) and TGF beta receptors I and II and decreased TGF beta binding to the receptors in in vitro-aged fibroblasts. Arch. Dermatol. Res. 290:158–162.
  • Smith-Mungo, L., and Kagan, H. (1998). Lysyl oxidase: Properties, regulation and multiple functions in biology. Matrix Biol. 16:387–398.
  • Szauter, K.M., Cao, T., Boyd, C.D., and Csiszar, K. (2005). Lysyl oxidase in development, aging and pathologies of the skin. Pathol. Biol. (Paris) 53:448–456.
  • Rucker, R.B., Kosonen, T., Clegg, M.S., Mitchell, A.E., Rucker, B.R., Uriu-Hare, J.Y., and Keen, C.L. (1998). Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am. J. Clin. Nutr. 67:996S–1002S.
  • Atsawasuwan, P., Mochida, Y., Katafuchi, M., Kaku, M., Fong, K.S.K., Csiszar, K., and Yamauchi, M. (2008). Lysyl oxidase binds transforming growth factor and regulates its signaling via amine oxidase activity. J. Biol. Chem. 283:34229–34240.
  • Maquart, F.X., Pickart, L., Laurent, M., Gillery, P., Monboisse, J.C., and Borel, J.P. (1988). Glycyl-L-histidyl-L-lysine (GHK) is a tripeptide with affinity for copper(II) ions. FEBS Lett. 238:343–346.
  • Maquart, X., Bellon, G., Chaqour, B., Wegrowski, J., Leonard, M., Patt, T., Ronald, E., Trachy, M.J.C., Chastang, F., Birembaut, P., Gillery, P., and Borel, J.P. (1993). In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds. J. Clin. Invest. 92:2368–2376.
  • Pickart, L. (2008). The human tri-peptide GHK and tissue remodeling. J. Biomater. Sci. Polym. Ed. 19:969–988.
  • Pollard, J.D., Quan, S., Kang, T., and Koch, R.J. (2005). Effects of copper tripeptide on the growth and expression of growth factors by normal and irradiated fibroblasts. Arch. Facial Plast. Surg. 7:27–31.
  • Trivedy, C., Meghji, S., Warnakulasuriya, K.A., Johnson, N.W., and Harris, M. (2001). Copper stimulates human oral fibroblasts in vitro: A role in the pathogenesis of oral submucous fibrosis. J. Oral Pathol. Med. 30:465–470.
  • Kothapalli, C., and Ramamurthi, A. (2009). Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomaterialia 5:541–553.
  • Gorter, R.W., Butorac, M., and Cobian, E.P. (2004). Examination of the cutaneous absorption of copper after the use of copper-containing ointments. Am. J. Ther. 11:453–458.
  • Borkow, G., Gabbay, J., Lyakhovitsky, A., and Huszar, M. (2009). Improvement of facial skin characteristics using copper oxide containing pillowcases: A double-blind, placebo-controlled, parallel, randomized study. Int. J. Cosmet. Sci. 31:437–443.
  • Borkow, G., Okon-Levy, N., and Gabbay, J. (2010). Copper oxide impregnated wound dressing: Biocidal and safety studies. Wounds 22:301–310.
  • Borkow, G., Gabbay, J., Dardik, R., Eidelman, A.I., Lavie, Y., Grunfeld, Y., Ikher, S., Huszar, M., Zatcoff, R.C., and Marikovsky, M. (2010). Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 18:266–275.
  • Voruganti, V.S., Klein, G.L., Lu, H.X., Thomas, S., Freeland-Graves, J.H., and Herndon, D.N. (2005). Impaired zinc and copper status in children with burn injuries: Need to reassess nutritional requirements. Burns 31:711–716.
  • Watson, R.E., Griffits, C.E., Craven, N.M., Shuttleworth, C.A., and Kielty, C.M. (1999). Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J. Invest. Dermatol. 112:782–787.
  • Philips, N., Tuason, M., Chang, T., Lin, Y., Tahir, M., and Rodriguez, S.G. (2009). Differential effects of ceramide on cell viability and extracellular matrix remodeling in keratinocytes and fibroblasts. Skin Pharmacol. Physiol. 22:151–157.
  • Sen, C.K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E.C., Hunt, T.K., and Roy, S. (2002). Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. Heart Circ. Physiol. 282:1821–1827.
  • Moriguchi, M., Nakajima, T., Kimura, H., Watanabe, T., Takashima, H., Mitsumoto, Y., Katagishi, T., Okanoue, T., and Kagawa, K. (2002). The copper chelator trientine has an antiangiogenic effect against hepatocellular carcinoma, possibly through inhibition of interleukin-8 production. Int. J. Cancer 102:445–452.
  • Pan, Q., Kleer, C.G., van Golen, K.L., Irani, J., Bottema, K.M., Bias, C., De Carvalho, M., Mesri, E.A., Robins, D.M., Dick, R.D., Brewer, G.J., and Merajver, S.D. (2002). Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62:4854–4859.
  • Willems-Widyastuti, A., Alagappan, V.K., Arulmani, U., Vanaudenaerde, B.M., de Boer, W.I., Mooi, W.J., Verleden, G.M., and Sharma, H.S. (2011). Transforming growth factor-beta 1 induces angiogenesis in vitro via VEGF production in human airway smooth muscle cells. Indian J. Biochem. Biophys. 48:262–269.
  • Mezzeti, A., Pirdomenico, S.D., Costantini, F., Romano, F., De Cesare, D., Cuccurullo, F., Imbastaro, T., Riario-Sforza, G., Di Giacomo, F., Zuliani, G., and Fellin, R. (1998). Copper/zinc ratio and systemic oxygen load: Effect of aging and aging-related degenerative diseases. Free Radic. Biol. Med. 25:676–681.
  • Abreu, I.A., and Cabelli, D.E. (2010). Superoxide dismutases—A review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 1804:263–274.
  • Zuo, X., Xie, H., Dong, D., Jiang, N., Zhu, H., and Kang, Y.J. (2010). Cytochrome c oxidase is essential for copper-induced regression of cardiomyocyte hypertrophy. Cardiovasc. Toxicol. 10:208–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.