648
Views
45
CrossRef citations to date
0
Altmetric
Research Article

RhoA-Mediated Signaling in Mechanotransduction of Osteoblasts

, , , , , & show all
Pages 398-406 | Received 05 Dec 2011, Accepted 26 Feb 2012, Published online: 10 Apr 2012

References

  • Morey, E.R., and Baylink, D.J. (1978). Inhibition of bone formation during space flight. Science 201(4361):1138–1141.
  • Sessions, N.D., Halloran, B.P., Bikle, D.D., Wronski, T.J., Cone, C.M., and Morey-Holton, E. (1989). Bone response to normal weight bearing after a period of skeletal unloading. Am. J. Physiol. 257(4 Pt 1):E606–E610.
  • Robling, A.G., Castillo, A.B., and Turner, C.H. (2006). Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng. 8:455–498.
  • Piekarski, K., and Munro, M. (1977). Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623):80–82.
  • Weinbaum, S., Cowin, S.C., and Zeng, Y. (1994). A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech. 27(3):339–360.
  • Cowin, S.C., Weinbaum, S., and Zeng, Y. (1995). A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech. 28(11):1281–1297.
  • Bonewald, L.F. (2011). The amazing osteocyte. J. Bone Miner. Res. 26(2):229–238.
  • Bonewald, L.F., and Johnson, M.L. (2008). Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615.
  • Ponik, S.M., Triplett, J.W., and Pavalko, F.M. (2007). Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J. Cell. Biochem. 100(3):794–807.
  • Young, S.R., Gerard-O’Riley, R., Kim, J.B., and Pavaoko, F.M. (2009). Focal adhesion kinase is important for fluid shear-induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 24(3):411–424.
  • Ban, Y., Wu, Y.Y., Yu, T., Geng, N., Wang, Y.Y., Liu, X.G., and Gong, P. (2011). Response of osteoblasts to low fluid shear stress is time dependent. Tissue Cell. 43(5):311–317.
  • You, J., Reilly, G.C., Zhen, X., Yellowley, C.E., Chen, Q., Donahue, H.J., and Jacobs, C.R. (2001). Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276(16):13365–13371.
  • Zhang, P., Turner, C.H., and Yokota, H. (2009). Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone. 44(5):989–998.
  • Smalt, R., Mitchell, F.T., Howard, R.L., and Chambers, T.J. (1997). Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273(4 Pt 1):E751–E758.
  • Bakker, A.D., Soejima, K., Klein-Nulend, J., and Burger, E.H. (2001). The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34(5):671–677.
  • Johnson, D.L., McAllister, T.N., and Frangos, J.A. (1996). Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271(1 Pt 1):E205–E208.
  • Owan, I., Burr, D.B., Turner, C.H., Qiu, J., Tu, Y., Onyia, J.E., and Duncan, R.L. (1997). Mechanotransduction in bone: Osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273(3 Pt 1):C810–C815.
  • Ajubi, N.E., Klein-Nulend, J., Alblas, M.J., Burger, E.H., and Nijweide, P.J. (1999). Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am. J. Physiol. 276(1 Pt 1):E171–E178.
  • You, J., Yellowley, C.E., Donahue, H.J., Zhang, Y., Chen, Q., and Jacobs, C.R. (2000). Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122(4):387–393.
  • Chen, N.X., Ryder, K.D., Pavalko, F.M., Turner, C.H., Burr, D.B., Qiu, J., and Duncan, R.L. (2000). Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am. J. Physiol. Cell Physiol. 278(5):C989–C997.
  • Klein-Nulend, J., Semeins, C.M., Ajubi, N.E., Nijweide, P.J., and Burger, E.H. (1995). Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—Correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217(2):640–648.
  • Liedert, A., Kaspar, D., Blakytny, R., Claes, L., and Ignatius, A. (2006). Signal transduction pathways involved in mechanotransduction in bone cells. Biochem. Biophys. Res. Commun. 349(1):1–5.
  • Reinholt, F.P., Hultenby, K., Oldberg, A., and Heinegard, D. (1990). Osteopontin—A possible anchor of osteoclasts to bone. Proc. Natl Acad. Sci. USA. 87(12):4473–4475.
  • Li, C.J., Chang, J.K., Wang, G.J., and Ho, M.L. (2011). Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity. Bone 48(2):286–297.
  • Wadhwa, S., Choudhary, S., Voznesensky, M., Epstein, M., Raisz, L., and Pilbeam, C. (2002). Fluid flow induces COX-2 expression in MC3T3-E1 osteoblasts via a PKA signaling pathway. Biochem. Biophys. Res. Commun. 297(1):46–51.
  • Fu, L., Patel, M.S., Bradley, A., Wagner, E.F., and Karsenty, G. (2005). The molecular clock mediates leptin-regulated bone formation. Cell 122(5):803–815.
  • Chen, Z., Wang, X., Shao, Y., Shi, D., Chen, T., Cui, D., and Jiang, X. (2011). Synthetic osteogenic growth peptide promotes differentiation of human bone marrow mesenchymal stem cells to osteoblasts via RhoA/ROCK pathway. Mol. Cell. Biochem. 358(1–2):221–227.
  • Khatiwala, C.B., Kim, P.D., Peyton, S.R., and Putnam, A.J. (2009). ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24(5):886–898.
  • Del Re, D.P., Miyamoto, S., and Brown, J.H. (2008). Focal adhesion kinase as a RhoA-activable signaling scaffold mediating Akt activation and cardiomyocyte protection. J. Biol. Chem. 283(51):35622–35629.
  • Ghosh, P.M., Bedolla, R., Mikhailova, M., and Kreisberg, J.I. (2002). RhoA-dependent murine prostate cancer cell proliferation and apoptosis: Role of protein kinase Czeta. Cancer Res. 62(9):2630–2636.
  • Yokota, H., Goldring, M.B., and Sun, H.B. (2003). CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J. Biol. Chem. 278(47):47275–47280.
  • Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Georgescu, C., and Romero, R. (2007). A systems biology approach for pathway level analysis. Genome. Res. 17(10):1537–1545.
  • Yoshizaki, H., Ohba, Y., Kurokawa, K., Itoh, R.E., Nakamura, T., Mochizuki, N., Nagashima, K., and Matsuda, M. (2003). Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162(2):223–232.
  • Tanaka, S., Sun, H.B., Roeder, R.K., Burr, D.B., Turner, C.H., and Yokota, H. (2005). Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif. Tissue Int. 76:261–271.
  • Guo, M., Joiakim, A., and Reiners Jr, J.J. (2000). Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated aryl hydrocarbon receptor transformation and CYP1A1 induction by the phosphatidylinositol 3-kinase inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1- benzopyran-4-one (LY294002). Biochem. Pharmacol. 60(5):635–642.
  • Robling, A.G., and Turner, C.H. (2009). Mechanical signaling for bone modeling and remodeling. Crit. Rev. Eukaryot. Gene Expr. 19(4):319–338.
  • Pavalko, F.M., Chen, N.X., Turner, C.H., Burr, D.B., Atkinson, S., Hsieh, Y., Qiu, J., and Duncan, R.L. (1998). Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275(44):C1591–C1601.
  • Allen, R.J., Bogle, I.D., and Ridley, A.J. (2011). A model of localised Rac1 activation in endothelial cells due to fluid flow. J. Theor. Biol. 280(1):34–42.
  • Woodward, H.N., Anwar, A., Riddle, S., Taraseviciene-Stewart, L., Fragoso, M., Stenmark, K.R., and Gerasimovskaya, E.V. (2009). PI3K, Rho, and ROCK play a key role in hypoxia-induced ATP release and ATP-stimulated angiogenic responses in pulmonary artery vasa vasorum endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 297(5):L954–L964.
  • Mohamed, J.S., and Boriek, A.M. (2010). Stretch augments TGF-beta1 expression through RhoA/ROCK1/2, PTK, and PI3K in airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 299(3):L413–L424.
  • Mark, M.P., Prince, C.W., Oosawa, T., Gay, S., Bronckers, A.L., and Butler, W.T. (1987). Immunohistochemical demonstration of a 44-KD phosphoprotein in developing rat bones. J. Histochem. Cytochem. 35(7):707–715.
  • Franzen, A., Oldberg, A., and Solursh, M. (1989). Possible recruitment of osteoblastic precursor cells from hypertrophic chondrocytes during initial osteogenesis in cartilaginous limbs of young rats. Matrix 9(4):261–265.
  • Pereira, R.O., Carvalho, S.N., Stumbo, A.C., Rodrigues, C.A., Porto, L.C., Moura, A.S., and Carvalho, L. (2006). Osteopontin expression in coculture of differentiating rat fetal skeletal fibroblasts and myoblasts. In Vitro Cell. Dev. Biol. Anim. 42(1–2):4–7.
  • Gauer, S., Hauser, I.A., Obermuller, N., Holzmann, Y., Geiger, H., and Goppelt-Struebe, M. (2008). Synergistic induction of osteopontin by aldosterone and inflammatory cytokines in mesangial cells. J. Cell. Biochem. 103(2):615–623.
  • Burdo, T.H., Wood, M.R., and Fox, H.S. (2007). Osteopontin prevents monocyte recirculation and apoptosis. J. Leukoc. Biol. 81(6):1504–1511.
  • Hanyu, R., Hayata, T., Nagao, M., Saita, Y., Hemmi, H., Notomi, T., Nakamoto, T., Schipani, E., Knonenbery, H., Kaneko, K., Kurosawa, H., Ezura, Y., and Noda, M. (2011). Per-1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J. Cell. Biochem. 112(2):433–438.
  • Sudo, H., Kodama, H.A., Amagai, Y., Yamamoto, S., and Kasai, S. (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell. Biol. 96(1):191–198.
  • Barragan-Adjemian, C., Lausten, L., Ang, D.B., Johnson, M., Katz, J., and Bonewald, L.F. (2009). Bisphosphonate-related osteonecrosis of the jaw: Model and diagnosis with cone beam computerized tomography. Cells Tissues Organs. 189(1–4):284–288.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.