415
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Expression of MMP-2, TIMP-2, TGF-β1, and Decorin in Dupuytren’s Contracture

, , , , , & show all
Pages 469-477 | Received 27 Nov 2011, Accepted 13 Apr 2012, Published online: 24 Jul 2012

References

  • Tomasek, J.J., Vaughan, M.B., and Haaksma, C.J. (1999). Cellular structure and biology of Dupuytren’s disease. Hand Clin. 15:21–34.
  • Dave, S.A., Banducci, D.R., Graham, W.P., Allison, G.M., and Ehrlich, H.P. (2001). Differences in alpha smooth muscle actin expression between fibroblasts derived from Dupuytren’s nodules or cords. Exp. Mol. Pathol. 71:147–155.
  • Arthur, M.J.P. (2000). Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G245–G249.
  • Li, W.P., and Anderson, C.J. (2003). Imaging matrix metalloproteinase expression in tumours. Q. J. Nucl. Med. 47:201–208.
  • Aimes, R.T., and Quigley, J.P. (1995). Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyses the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3⁄4- and 1⁄4-length fragments. J. Biol. Chem. 270:5872–5876.
  • Imai, K., Hiramatsu, A., Fukushima, D., Pierschabacher, D., and Okada, Y. (1997). Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-β1 release. Biochem. J. 322:809–814.
  • Lynch, C.C., and Matrisian, L.M. (2002). Matrix metalloproteinases in tumour-host cell communication. Differentiation 70:561–573.
  • Mönig, S.P., Baldus, S.E., Hennecken, J.K., Spiecker, D.B., Grass, G., and Schneider, P.M. (2001). Expression of MMP-2 is associated with progression and lymph node metastasis of gastric carcinoma. Histopathology 39:597–602.
  • Kloen, P. (1999). New insights in the development of Dupuytren’s contracture: A review. Br. J. Plast. Surg. 52:629–635.
  • Cordova, A., Tripoli, M., Corradino, B., Napoli, P., and Moschella, F. (2005). Dupuytren’s contracture: An update of biomolekular aspects and therapeutic perspectives. J. Hand Surg. 30B:557–662.
  • Zhou, H.-M., Wang, J., Ch, E., Wen, W., Hamilton, D.W., and Conway, S.J. (2010). Spatiotemporal expression of periostin during skin development and incisional wound healing: Lessons for human fibrotic scar formation. J. Cell Commun. Signal. 4:99–107.
  • Dudas, J., Kovalszky, I., Gallai, M., Nagay, J.O., Schaff, Z., Knittel, T., Mehde, M., Neubauer, K., Szalay, F., and Ramadori, G. (2001). Expression of decorin, transforming growth factor-beta1, tissue inhibitor metalloproteinase 1 and 2, and type IV collagenases in chronic hepatitis. Am. J. Clin. Pathol. 115:725–735.
  • Iozzo, R.V. (1998). Matrix proteoglycans: From molecular design to cellular function. Annu. Rev. Biochem. 67:609–652.
  • Reed, C., and Iozzo, R.V. (2003). The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconjugate J. 19:249–255.
  • Nagay, B. (1985). Dupuytren’s contracture–contemporary views on the etiopathogenesis and clinic of the disease. Mater. Med. Pol. 4:251–256.
  • Mott, J.D., and Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16:558–564.
  • Pupa, S.M., Menard, S., Forti, S., and Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. J. Cell. Physiol. 192:259–267.
  • Desoize, B. (2004). Stromal reaction and tumour growth. Crit. Rev. Oncol. Hematol. 49:173–176.
  • Augoff, K., Grabowski, K., Rabczyński, J., Kolondra, A., Tabola, R., and Sikorski, A.F. (2009). Expression of decorin in esophageal cancer in relation to the expression of three isoforms of transforming growth factor-beta (TGF-β1, ‐β2 and ‐β3) and matrix metalloproteinase-2 activity. Cancer Invest. 27:443–452.
  • Eckes, B., Zigrino, P., Kessler, D., Holtkötter, O., Shephard, P., Mauch, C., and Krieg, T. (2000). Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 19:325–332.
  • Augoff, K., Ratajczak, K., Gosk, J., Tabola, R., and Rutowski, R. (2006). Gelatinase A activity in Dupuytren’s disease. J. Hand Surg. 31A:1635–1639.
  • Neely, A., Clendening, C., Gardner, J., Greenhalgh, D.G., and Warden, G.D. (1999). Gelatinase activity in keloids and hypertrophic scars. Wound Rep. Regen. 7:166–171.
  • Altieri, P., Brunelli, C., Garibaldi, S., Nicolino, A., Ubaldi, S., and Spallaross, P. (2003). Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur. J. Clin. Invest. 3:648–656.
  • Ben-Yosef, Y., Lahat, N., Shapiro, S., Bitterman, H., and Miller, A. (2002). Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ. Res. 90:784–791.
  • Ulrich, D., Hrynyschyn, K., and Pallua, N. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinase in sera and tissue of patients with Dupuytren’s disease. Plast. Reconstr. Surg. 112:1279–1286.
  • Ulrich, D., Ulrich, F., Piatkowski, A., and Pallua, N. (2009). Expression of matrix metalloproteinases and their inhibitors in cords and nodules of patients with Dupuytren’s disease. Arch. Orthop. Trauma Surg. 129:1453–1459.
  • Qian, A., Meals, R.A., Rajfer, J., and Gonzalez-Cadavid, N.F. (2004). Comparison of gene expression profiles between Peyronie’s disease and Dupuytren’s contracture. Urology 64:399–404.
  • Tarlton, J.F., Meagher, P., Brown, R.A., McGrouther, D.A., Bailey, A.J., and Afoke, A. (1998). Mechanical stress in vitro induces increased expression of MMPs 2 and 9 in excised Dupuytren’s disease tissue. J. Hand Surg. 23B:297–302.
  • Johnston, P., Chojnowski, A.J., and Davidson, R.K. (2007). A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J. Hand Surg. 32:343–351.
  • Hutchinson, J.W., Tierney, G.M., Parsons, S.L., and Davis, T.R.C. (1998). Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J. Bone Joint Surg. 80:907–908.
  • Mohammad, M., and Al-Qattan, M.D. (2006). Factors in the pathogenesis of Dupuytren’s contracture. J. Hand Surg. 31A:1527–1553.
  • Beanes, S.R., Dang, C., Ch, S., Wang, Y., Urata, M., Ting, K., Fonkalsrud, E.W., Benhaim, P., Hedrick, M.H., Atkinson, J.B., and Lorenz, H.P. (2001). Down-regulation of decorin, a transforming growth factor–beta modulator, is associated with scarless fetal wound healing. J. Pediatr. Surg. 36:1666–1671.
  • Hausser, H., Groning, A., and Hasilik, A. (1994). Selective inactivity of TGF-beta/decorin complexes. FEBS Lett. 353:243–245.
  • Matsumoto, K., Matsunaga, S., and Imamura, T. (1994). Expression and distribution of transforming growth factor-beta and decorin during fracture healing. Vivo 8:215–219.
  • Kahari, V.M., Larjava, H., and Uitto, J. (1991). Differential regulation of extracellular matrix proteoglycan (PG) gene expression: Transforming growth factor-beta1 upregulates biglycan (PG I) and versican (large fibroblast PG) but down regulates decorin (PG II) mRNA levels in human fibroblasts in culture. J. Biol. Chem. 266:10608–10615.
  • Meyer, D., Krull, N., and Dreher, K.L. (1992). Biglycan and decorin gene expression in normal and fibrotic rat liver: Cellular localization and regulatory factors. Hepatology 16:204–216.
  • Heimer, R., Bashey, R.I., and Kyle, J.T.G. (1995). F-beta modulates the synthesis of proteoglycans by myocardial fibroblasts in culture. J. Mol. Cell. Cardiol. 27:2191–2198.
  • Badalamente, M.A., Sampson, S.P., Hurst, L.C., Dowd, A., and Miyasaka, K. (1996). The role of transforming growth factor beta in Dupuytren’s disease. J. Hand Surg. 21A:210–215.
  • Bayat, A., Watson, J.S., Stanley, J.K., and Alansari, A. (2002). Genetic susceptibility in Dupuytren’s disease. J. Bone Joint Surg. 84:211–215.
  • Walker, R.A., and Dearing, S.J. (1992). Transforming growth factor beta 1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur. J. Cancer 28:641–644.
  • Hagedorn, H., Sauer, U., Schleicher, E., and Nerlich, A. (1999). Expression of TGF-beta 1 protein and mRNA and the effect on the tissue remodeling in laryngeal carcinomas. Anticancer Res. 19:4265–4272.
  • Ferenc, T., Stalińska, L., Turant, M., Sygut, J., Tosik, D., Dziki, A., and Kulig, A. (2006). Analysis of TGF-beta protein expression in aggressive fibromatosis (desmoid tumor). Pol. J. Pathol. 57:77–81.
  • Ghahary, A., Shen, Y.J., Scott, P.G., Gong, Y., and Tredget, E.E. (1993). Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human postburn hypertrophic scar tissues. J. Lab. Clin. Med. 122:465–473.
  • Wang, R., Ghahary, A., Shen, Q., Scott, P.G., Roy, K., and Tredget, E.E. (2000). Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 8:128–137.
  • Scott, P.G., Dodd, C.M., Tredget, E.E., Ghahary, A., and Rahemtulla, F. (1995). Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology 26:423–431.
  • Erkan, M., Kleeff, J., Gorbachevski, A., Reiser, C., Mitkus, T., Esposito, I., Giese, T., Buchler, M.W., Giese, N.A., and Friess, H. (2007). Periostin creates a tumor-supportive microenvironment in the pancreas by sustaining fibrogenic stellate cell activity. Gastroenterology 132:1447–1464.
  • Norris, R.A., Moreno-Rodriguez, R.A., Sugi, Y., Hoffman, S., Amos, J., Hart, M.M., Potts, J.D., Goodwin, R.L., and Markwald, R.R. (2008). Periostin regulates atrioventricular valve maturation. Dev. Biol. 316:200–213.
  • Vi, L., Feng, L., Zhu, R.D., Wu, Y., Satish, L., Gan, B.S., and O’Gorman, D.B. (2009). Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp. Cell Res. 315:3574–3586.
  • Rehman, S., Salway, F., Stanley, J.K., Ollier, W.E., Day, P., and Bayat, A. (2008). Molecular phenotypic descriptors of Dupuytren’s disease defined using informatics analysis of the transcriptome. J. Hand Surg. 33:359–372.
  • Shih, B., Wijeratne, D., Armstrong, D.J., Lindau, T., Day, P., and Bayat, A. (2009). Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J. Hand Surg. 34:124–136.
  • Kuhn, B., del Monte, F., Hajjar, R.J., Chang, Y.S., Lebeche, D., Arab, S., and Keating, M.T. (2007). Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat. Med. 13:962–969.
  • Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., Saito, M., Fukuda, K., Nishiyama, T., and Kitajima, S. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. J. Exp. Med. 205:295–303.
  • Oku, E., Kanaji, T., Takata, Y., Oshima, K., Seki, R., Morishige, S., Imamura, R., Ohtsubo, K., Hashiguchi, M., and Osaki, K. (2008). Periostin and bone marrow fibrosis. Int. J. Hematol. 88:57–63.
  • Chen, Y.F., Feng, J.A., Li, P., Xing, D., Ambalavanan, N., and Oparil, S. (2006). Atrial natriuretic peptide-dependent modulation of hypoxiainduced pulmonary vascular remodeling. Life Sci. 79:1357–1365.
  • Jackson-Boeters, L., Wen, W., and Hamilton, D.W. (2009). Periostin localizes to cells in normal skin, but is associated with the extracellular matrix during wound repair. J. Cell Commun. Signal. 3:125–133.
  • Wang, Q., Nie, F.F., Zhao, X., and Qin, Z.L. (2007). The expression of periostin in hyperplasic scars and the relations to TGF-beta1 and its receptors. Zhonghua Zheng Xing Wai Ke Za Zhi. 23:229–232.
  • Horiuchi, K., Amizuka, N., Takeshita, S., Takamatsu, H., Katsuura, M., Ozawa, H., Toyama, Y., Bonewald, L.F., and Kudo, A. (1999). Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J. Bone Miner. Res. 14:1239–1249.
  • Rios, H.F., Ma, D., Xie, Y., Giannobile, W.V., Bonewald, L.F., Conway, S.J., and Feng, J.Q. (2008). Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J. Periodontol. 79:1480–1490.
  • Norris, R.A., Potts, J.D., Yost, M.J., Junor, L., Brooks, T., Tan, H., Hoffman, S., Hart, M.M., Kern, M.J., and Damon, B. (2009). Periostin promotes a fibroblastic lineage pathway in atrioventricular valve progenitor cells. Dev. Dyn. 238:1052–1063.
  • Tuan, T.L., Song, A., Chang, S., Younai, S., and Nimni, M.E. (1996). In vitro fibroplasia: Matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 223:127–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.