136
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Inhibitory Effect of Adenovirus-Mediated siRNA-Targeting BMPR-IB on UHMWPE-Induced Bone Destruction in the Murine Air Pouch Model

, , , , , , & show all
Pages 528-534 | Received 28 Mar 2012, Accepted 09 Jun 2012, Published online: 24 Jul 2012

References

  • Berry, D.J., Harmsen, W.S., Cabanela, M.E., and Morrey, B.F. (2002). Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements: Factors affecting survivorship of acetabular and femoral components. J. Bone Joint Surg. Am. 84(2):171–177.
  • Keener, J.D., Callaghan, J.J., Goetz, D.D., Pederson, D.R., Sullivan, P.M., and Johnston, R.C. (2003). Twenty-five-year results after Charnley total hip arthroplasty in patients less than fifty years old: A concise follow-up of a previous report. J. Bone Joint Surg. Am. 85(6):1066–1072.
  • al-Saffar, N., Mah, J.T., Kadoya, Y., and Revell, P.A. (1995). Neovascularisation and the induction of cell adhesion molecules in response to degradation products from orthopaedic implants. Ann. Rheum. Dis. 54(3):201–208.
  • Miyanishi, K., Trindade, M.C., Ma, T., Goodman, S.B., Schurman, D.J., and Smith, R.L. (2003). Periprosthetic osteolysis: Induction of vascular endothelial growth factor from human monocyte/macrophages by orthopaedic biomaterial particles. J. Bone Miner. Res. 18(9):1573–1583.
  • Ritchlin, C.T., Schwarz, E.M., O‘Keefe, R.J., and Looney, R.J. (2004). RANK, RANKL and OPG in inflammatory arthritis and periprosthetic osteolysis. J. Musculoskel. Neuron Interact. 4(3):276–284.
  • Niida, S., Kaku, M., Amano, H., Yoshida, H., Kataoka, H., Nishikawa, S., Tanne, K., Maeda, N., Nishikawa, S.-I., and Kodama, H. (1999). Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J. Exp. Med. 190(2):293–298.
  • Kaku, M., Kohno, S., Kawata, T., Fujita, T., Tokimasa, C., Tsutsui, K., and Tanne, K. (2001). Effects of vascular endothelial growth factor on osteoclast induction during tooth movement in mice. J. Dent. Res. 80(10):1880–1883.
  • Nakagawa, M., Kaneda, T., Arakawa, T., Morita, S., Sato, T., Yomada, T., Hanada, K., Kumegawa, M., and Hakeda, Y. (2000). Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett. 473(2):161–164.
  • Chen, D., Zhao, M., and Mundy, G.R. (2004). Bone morphogenetic proteins. Growth Factors 22(4):233–241.
  • Wingerter, S., Tucci, M., Bumgardner, J., and Benghuzzi, H. (2007). Evaluation of short-term healing following sustained delivery of osteoinductive agents in a rat femur drill defect model. Biomed. Sci. Instrum. 43:188–193.
  • Gautschi, O.P., Frey, S.P., and Zellweger, R. (2007). Bone morphogenetic proteins in clinical applications. ANZ J. Surg. 77(8):626–631.
  • Horowitz, M.C., and Lorenzo, J.A. (2004). The origins of osteoclasts. Curr. Opin. Rheumatol. 16(4):464–468.
  • Kaneko, H., Arakawa, T., Mano, H., Kaneda, T., Ogasawara, A., Nakagawa, M., Toyama, Y., Yabe, Y., Kumegawa, M., and Hakeda, Y. (2000). Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27(4):479–486.
  • Giannoudis, P.V., Kanakaris, N.K., and Einhorn, T.A. (2007). Interaction of bone morphogenetic proteins with cells of the osteoclast lineage: Review of the existing evidence. Osteoporos. Int. 18(12): 1565–1581.
  • Wrana, J.L., Attisano, L., Wieser, R., Ventura, F., and Massague, J. (1994). Mechanism of activation of the TGF-beta receptor. Nature 370(6488):341–347.
  • Mishina, Y., Starbuck, M.W., Gentile, M.A., Fukuda, T., Kasparcova, V., Seedor, J.G., Hanks, M.C., Amling, M., Pinero, G.J., Harada, S., and Behringer, R.R. (2004). Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J. Biol. Chem. 279(26):27560–27566.
  • Okamoto, M., Murai, J., Yoshikawa, H., and Tsumaki, N. (2006). Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J. Bone Miner. Res. 21(7):1022–1033.
  • Kamiya, N., Ye, L., Kobayashi, T., Mochida, Y., Yamauchi, M., Kronenberg, H.M., Feng, J.Q., and Mishina, Y. (2008). BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135(22):3801–3811.
  • Ren, W., Yang, S.Y., and Wooley, P.H. (2004). A novel murine model of orthopaedic wear-debris associated osteolysis. Scand. J. Rheumatol. 33(5):349–357.
  • Markel, D.C., Zhang, R., Shi, T., Hawkins, M., and Ren, W. (2009). Inhibitory effects of erythromycin on wear debris-induced VEGF/Flt-1 gene production and osteolysis. Inflamm. Res. 58(7):413–421.
  • Wan, D.C., Shi, Y.Y., Nacamuli, R.P., Quarto, N., Lyons, K.M., and Longaker, M.T. (2006). Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proc. Natl. Acad. Sci. USA 103(33):12335–12340.
  • Luo, Q., Kang, Q., Song, W.X., Luu, H.H., Luo, X., An, N., Luo, J., Deng, Z.L., Jiang, W., Yin, H., Chen, J., Sharff, K.A., Tang, N., Bennett, E., Haydon, R.C., and He, T.C. (2007). Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing. Gene 395(1–2):160–169.
  • Ren, W.P., Markel, D.C., Zhang, R., Peng, X., Wu, B., Monica, H., and Wooley, P.H. (2006). Association between UHMWPE particle-induced inflammatory osteoclastogenesis and expression of RANKL, VEGF, and Flt-1 in vivo. Biomaterials 27(30):5161–5169.
  • Yang, S.Y., Mayton, L., Wu, B., Goater, J.J., Schwarz, E.M., and Wooley, P.H. (2002). Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum. 46(9): 2514–2523.
  • Lerner, U.H. (2000). Osteoclast formation and resorption. Matrix Biol. 19(2):107–120.
  • Sells Galvin, R.J., Gatlin, C.L., Horn, J.W., and Fuson, T.R. (1999). TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. Biochem. Biophys. Res. Commun. 265(1):233–239.
  • Kaneda, T., Nojima, T., Nakagawa, M., Ogasawara, A., Kaneko, H., Sato, T., Mano, H., Kumegawa, M., and Hakeda, Y. (2000). Endogenous production of TGF-beta is essential for osteoclastogenesis induced by a combination of receptor activator of NF-kappa B ligand and macrophage-colony-stimulating factor. J. Immunol. 165(8): 4254–4263.
  • Fuller, K., Bayley, K.E., and Chambers, T.J. (2000). Activin A is an essential cofactor for osteoclast induction. Biochem. Biophys. Res. Commun. 268(1):2–7.
  • Itoh, K., Udagawa, N., Katagiri, T., Iemura, S., Ueno, N., Yasuda, H., Higashio, K., Quinn, J.M., Gillespie, M.T., Martin, T.J., Suda, T., and Takahashi, N. (2001). Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappa B ligand. Endocrinology 142(8):3656–3662.
  • Jensen, E.D., Pham, L., Billington, Jr., C.J., Espe, K., Carlson, A.E., Westendorf, J.J., Petryk, A., Gopalakrishnan, R., and Mansky, K. (2010). Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J. Cell. Biochem. 109(4):672–682.
  • Tachi, K., Takami, M., Zhao, B., Mochizuki, A., Yamada, A., Miyamoto, Y., Inoue, T., Baba, K., and Kamijo, R. (2010). Bone morphogenetic protein 2 enhances mouse osteoclast differentiation via increased levels of receptor activator of NF-κB ligand expression in osteoblasts. Cell Tissue Res. 342(2):213–220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.