199
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Extracellular β-NAD+ Inhibits Interleukin-1-Induced Matrix Metalloproteinase-1 and -3 Expression on Human Gingival Fibroblasts

, , &
Pages 204-209 | Received 26 Dec 2012, Accepted 28 Feb 2013, Published online: 15 Apr 2013

References

  • Vincenti, M.P., and Brinckerhoff, C.E. (2002). Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4:157–164.
  • Fanjul-Fernandez, M., Folgueras, A.R., Cabrera, S., and Lopez-Otin, C. (2010). Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta. 1803:3–19.
  • Kida, Y., Kobayashi, M., Suzuki, T., Takeshita, A., Okamatsu, Y., Hanazawa, S., Yasui, T., and Hasegawa, K. (2005). Interleukin-1 stimulates cytokines, prostaglandin E2 and matrix metalloproteinase-1 production via activation of MAPK/AP-1 and NF-kappaB in human gingival fibroblasts. Cytokine. 29:159–168.
  • Domeij, H., Yucel-Lindberg, T., and Modeer, T. (2002). Signal pathways involved in the production of MMP-1 and MMP-3 in human gingival fibroblasts. Eur. J. Oral Sci. 110:302–306.
  • Sorsa, T., Tjäderhane, L., and Salo, T. (2004). Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 10: 311–318.
  • Westerlund, U., Ingman, T., Lukinmaa, P.L., Salo, T., Kjeldsen, L., Borregaard, N., Tjäderhane, L., Konttinen, Y.T., and Sorsa, T. (1996). Human neutrophil gelatinase and associated lipocalin in adult and localized juvenile periodontitis. J. Dent. Res. 75:1553–1563.
  • Birkedal-Hansen, H. (1993). Role of matrix metalloproteinases in human periodontal diseases. J. Periodontol. 64:474–484.
  • Kunii, R., Nemoto, E., Kanaya, S., Tsubahara, T., and Shimauchi, H. (2005). Expression of CD13/aminopeptidase N on human gingival fibroblasts and up-regulation upon stimulation with interleukin-4 and interleukin-13. J. Periodontal Res. 40:138–146.
  • Nemoto, E., Sugawara, S., Takada, H., Shoji, S., and Horiuch, H. (1999). Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect. Immun. 67:6225–6233.
  • Nemoto, E., Kunii, R., Tada, H., Tsubahara, T., Ishihata, H., and Shimauchi, H. (2004). Expression of CD73/ecto-5'-nucleotidase on human gingival fibroblasts and contribution to the inhibition of interleukin-1alpha-induced granulocyte-macrophage colony stimulating factor production. J. Periodontal Res. 39:10–19.
  • Buckley, C.D., Pilling, D., Lord, J.M., Akbar, A.N., Scheel-Toellner, D., and Salmon, M. (2001). Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22:199–204.
  • Nemoto, E., Sugawara, S., Tada, H., Takada, H., Shimauchi, H., and Horiuchi, H. (2000). Cleavage of CD14 on human gingival fibroblasts cocultured with activated neutrophils is mediated by human leukocyte elastase resulting in down-regulation of lipopolysaccharide-induced IL-8 production. J. Immunol. 165:5807–5813.
  • Cox, S.W., Eley, B.M., Kiili, M., Asikainen, A., Tervahartiala, T., and Sorsa, T. (2006). Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases. Oral Dis. 12:34–40.
  • Haag, F., Adriouch, S., Brass, A., Jung, C., Moller, S., Scheuplein, F., Bannas, P., Seman, M., and Extracellular, K.-N.F. (2007). NAD and ATP: Partners in immune cell modulation. Purinergic Signal. 3:71–81.
  • Ziegler, M. (2000). New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem. 267:1550–1564.
  • Deaglio, S., and Malavasi, F. (2006). The CD38/CD157 mammalian gene family: An evolutionary paradigm for other leukocyte surface enzymes. Purinergic Signal. 2:431–441.
  • Gustafsson, A.J., Muraro, L., Dahlberg, C., Migaud, M., Chevallier, O., Khanh, H.N., Krishnan, K., Li, N., and Islam, M.S. (2011). ADP ribose is an endogenous ligand for the purinergic P2Y1 receptor. Mol. Cell. Endocrinol. 333:8–19.
  • Lee, H.C. (1997). Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 77:1133–1164.
  • Klein, C., Grahnert, A., Abdelrahman, A., Muller, C.E., and Extracellular, H.S. (2009). NAD(+) induces a rise in [Ca(2 +)](i) in activated human monocytes via engagement of P2Y(1) and P2Y(11) receptors. Cell Calcium. 46:263–272.
  • Moreschi, I., Bruzzone, S., Nicholas, R.A., Fruscione, F., Sturla, L., Benvenuto, F., Usai, C., Meis, S., Kassack, M.U., Zocchi, E., and De Flora, A. (2006). Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J. Biol. Chem. 281:31419–31429.
  • Seman, M., Adriouch, S., Scheuplein, F., Krebs, C., Freese, D., Glowacki, G., Deterre, P., Haag, F., and Koch-Nolte, F. (2003). NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity. 19:571–582.
  • Song, E.K., Lee, Y.R., Yu, H.N., Kim, U.H., Rah, S.Y., Park, K.H., Shim, I.K., Lee, S.J., Park, Y.M., Chung, W.G., Kim, J.S., and Han, M.K. (2008). Extracellular NAD is a regulator for FcgammaR-mediated phagocytosis in murine macrophages. Biochem. Biophys. Res. Commun. 367:156–161.
  • Umapathy, N.S., Zemskov, E.A., Gonzales, J., Gorshkov, B.A., Sridhar, S., Chakraborty, T., Lucas, R., and Verin, A.D. (2010). Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement. J. Cell. Physiol. 223:215–223.
  • Krebs, C., Koestner, W., Nissen, M., Welge, V., Parusel, I., Malavasi, F., Leiter, E.H., Santella, R.M., Haag, F., and Koch-Nolte, F. (2003). Flow cytometric and immunoblot assays for cell surface ADP-ribosylation using a monoclonal antibody specific for ethenoadenosine. Anal Biochem. 314:108–115.
  • Jacobson, E.L., and Jacobson, M.K. (1997). Tissue NAD as a biochemical measure of niacin status in humans. Methods Enzymol. 280:221–230.
  • Kim, U.H., Kim, M.K., Kim, J.S., Han, M.K., Park, B.H., and Kim, H.R. (1993). Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch. Biochem. Biophys. 305:147–152.
  • Bruzzone, S., Guida, L., Zocchi, E., Franco, L., and De Flora, A. (2001). Connexin 43 hemi channels mediate Ca2 + −regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15:10–12.
  • Smyth, L.M., Bobalova, J., Mendoza, M.G., Lew, C., and Mutafova-Yambolieva, V.N. (2004). Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J. Biol. Chem. 279:48893–48903.
  • Adriouch, S., Hubert, S., Pechberty, S., Koch-Nolte, F., Haag, F., and Seman, M. (2007). NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J. Immunol. 179:186–194.
  • Bujak, M., and Frangogiannis, N.G. (2009). The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz). 57:165–176.
  • Kleiner, D.E. Jr., and Stetler-Stevenson, W.G. (1993). Structural biochemistry and activation of matrix metalloproteases. Curr Opin Cell Biol. 5:891–897.
  • Gilmore, T.D. (2006). Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684.
  • Lee, H.C., and Aarhus, R. (1991). ADP-ribosyl cyclase: An enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul. 2:203–209.
  • Barchowsky, A., Frleta, D., and Vincenti, M.P. (2000). Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine. 12:1469–1479.
  • Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270:16483–16486.
  • Kim, S., Kim, Y., Lee, Y., and Chung, J.H. (2008). Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. J. Lipid Res. 49:2571–2581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.