253
Views
11
CrossRef citations to date
0
Altmetric
Organ Imaging/Functional Imaging: Original Research

Distribution of mesoscale elastic properties and mass density in the human femoral shaft

, , , , , & show all
Pages 120-132 | Received 04 Sep 2014, Accepted 27 Jan 2015, Published online: 04 Mar 2015

References

  • Bell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG. Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 2001;264:378–86
  • Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 2010;25:983–93
  • Granke M, Grimal Q, Saied A, Nauleau P, Peyrin F, Laugier P. Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 2011;49:1020–6
  • Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 2010;375:1729–36
  • Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 2013;28:313–24
  • Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, Reeve J, Klaushofer K, Fratzl P. Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone mate rial properties associated with femoral neck fragility. Calcif Tissue Int 2009;85:335–43
  • Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone 2012;51:114–22
  • Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 2011;49:1279–89
  • Austman RL, Milner JS, Holdsworth DW, Dunning CE. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech 2008;41:3171–6
  • Boccaccio A, Vena P, Gastaldi D, Franzoso G, Pietrabissa R, Pappalettere C. Finite element analysis of cancellous bone failure in the vertebral body of healthy and osteoporotic subjects. Proc Inst Mech Eng H 2008;222:1023–36
  • Tomaszewski PK, Verdonschot N, Bulstra SK, Verkerke GJ. A comparative finite-element analysis of bone failure and load transfer of osseointegrated prostheses fixations. Ann Biomed Eng 2010;38:2418–27
  • Verhulp E, van Rietbergen B, Muller R, Huiskes R. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations. J Biomech 2008;41:1479–85
  • Vetter A, Liu Y, Witt F, Manjubala I, Sander O, Epari DR, Fratzl P, Duda GN, Weinkamer R. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments. J Biomech 2011;44:517–23
  • Grimal Q, Rohrbach D, Grondin J, Barkmann R, Gluer CC, Raum K, Laugier P. Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation. Ultrasound Med Biol 2014;40:1015–26
  • Potsika VT, Grivas KN, Protopappas VC, Vavva MG, Raum K, Rohrbach D, Polyzos D, Fotiadis DI. Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones. Ultrasonics 2014;54:1219–30
  • Rohde K, Rohrbach D, Gluer CC, Laugier P, Grimal Q, Raum K, Barkmann R. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 2014;61:302–13
  • Keaveny TM. Biomechanical computed tomography-noninvasive bone strength analysis using clinical computed tomography scans. Ann NY Acad Sci 2010;1192:57–65
  • Yoon HS, Katz JL. Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry. J Biomech 1976;9:407–12
  • Hellmich C, Kober C, Erdmann B. Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann Biomed Eng 2008;36:108–22
  • Dall'ara E, Luisier B, Schmidt R, Pretterklieber M, Kainberger F, Zysset P, Pahr D. DXA predictions of human femoral mechanical properties depend on the load configuration. Med Eng Phys 2013;35:1564–72
  • Lang SB. Elastic coefficients of animal bone. Science 1969;165:287–8
  • Espinoza Orias AA, Deuerling JM, Landrigan MD, Renaud JE, Roeder RK. Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur. J Mech Behav Biomed Mater 2009;2:255–63
  • Ashman RB, Cowin SC, Rho JY, Van Buskirk WC, Rice JC. A continous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 1984;17:349–61
  • Bernard S, Grimal Q, Laugier P. Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy. J Mech Behav Biomed Mater 2013;18:12–19
  • Raum K. Microelastic imaging of bone. IEEE Trans Ultrason Ferroelect Freq Contr 2008;55:1417–31
  • Hofmann T, Heyroth F, Meinhard H, Franzel W, Raum K. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae. J Biomech 2006;39:2284–94
  • Isaksson H, Nagao S, Malkiewicz M, Julkunen P, Nowak R, Jurvelin JS. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J Biomech 2010;43:2410–17
  • Raum K, Hofmann T, Leguerney I, Saied A, Peyrin F, Vico L, Laugier P. Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice. Bone 2007;41:1017–24
  • Hube R, Mayr H, Hein W, Raum K. Prediction of biomechanical stability after callus distraction by high resolution scanning acoustic microscopy. Ultrasound Med Biol 2006;32:1913–21
  • Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K. Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. Ultrasound Med Biol 2011;37:474–83
  • Malo MK, Rohrbach D, Isaksson H, Toyras J, Jurvelin JS, Tamminen IS, Kroger H, Raum K. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 2013;53:451–8
  • Raum K, Reisshauer J, Brandt J. Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A 2004;71A:430–8
  • Raum K, Leguerney I, Chandelier F, Talmant M, Saied A, Peyrin F, Laugier P. Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation µCT. Phys Med Biol 2006;51:733–46
  • Raum K, Leguerney I, Chandelier F, Bossy E, Talmant M, Saied A, Peyrin F, Laugier P. Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements. Ultrasound Med Biol 2005;31:1225–35
  • Rohrbach D, Lakshmanan S, Peyrin F, Langer M, Gerisch A, Grimal Q, Laugier P, Raum K. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech 2012;45:2264–70
  • Granke M, Gourrier A, Rupin F, Raum K, Peyrin F, Burghammer M, Saied A, Laugier P. Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 2013;8:e58043
  • Tiburtius S, Schrof S, Molnar F, Varga P, Peyrin F, Grimal Q, Raum K, Gerisch A. On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomech Model Mechanobiol 2014;13:1003–23
  • Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin 2008;11:147–57
  • Parnell WJ, Grimal Q. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface 2009;6:97–109
  • Grimal Q, Raum K, Gerisch A, Laugier P. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 2011;10:925–37
  • Rudy DJ, Deuerling JM, Espinoza Orias AA, Roeder RK. Anatomic variation in the elastic inhomogeneity and anisotropy of human femoral cortical bone tissue is consistent across multiple donors. J Biomech 2011;44:1817–20
  • Grimal Q, Haupert S, Mitton D, Vastel L, Laugier P. Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data. Med Eng Phys 2009;31:1140–7
  • Lakshmanan S, Bodi A, Raum K. Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements. IEEE Trans Ultrason Ferroelectr Freq Control 2007;54:1560–70
  • Hirsekorn S, Pangraz S, Weides G, Arnold W. Erratum: measurement of elastic impedance with high spatial resolution using acoustic microscopy. Appl Phys Lett 1996;69:2138
  • Hirsekorn S, Pangraz S, Weides G, Arnold W. Measurement of elastic impedance with high spatial resolution using acoustic microscopy. Appl Phys Lett 1995;67:745–7
  • Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 2002;29:2672–81
  • Parnell WJ, Vu MB, Grimal Q, Naili S. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Biomech Model Mechanobiol 2012;11:883–901
  • Parnell WJ, Abrahams ID. Dynamic homogenization in periodic fibre reinforced media. Quasi-static limit for SH waves. Wave Motion 2006;43:474–98
  • Raum K, Cleveland RO, Peyrin F, Laugier P. Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 2006;51:747–58
  • Bensamoun S, Ho Ba Tho MC, Luu S, Gherbezza JM, de Belleval, JF. Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 2004;37:503–10
  • Weiss S, Zimmerman MC, Harten RD, Alberta FG, Meunier A. The acoustic and structural properties of the human femur. J Biomech Eng 1998;120:71–6
  • Raum K, Grimal Q, Laugier P, Gerisch A. Multiscale structure-functional modeling of lamellar bone. Proc Meet Acoust 2011;9:1–15
  • Saied A, Raum K, Leguerney I, Laugier P. Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone 2008;43:187–94
  • Duda GN, Heller M, Albinger J, Schulz O, Schneider E, Claes L. Influence of muscle forces on femoral strain distribution. J Biomech 1998;31:841–6
  • Zebaze RM, Jones AC, Pandy MG, Knackstedt MA, Seeman E. Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties. Bone 2011;48:1246–51
  • Moreau L, Minonzio JG, Talmant M, Laugier P. Measuring the wavenumber of guided modes in waveguides with linearly varying thickness. J Acoust Soc Am 2014;135:2614–24
  • Vuong J, Hellmich C. Bone fibrillogenesis and mineralization: quantitative analysis and implications for tissue elasticity. J Theor Biol 2011;287:115–30
  • Broz JJ, Simske SJ, Greenberg, AR. Material and compositional properties of selectively demineralized cortical bone. J Biomech 1995;28:1357–68
  • Langer M, Cloetens P, Hesse B, Suhonen H, Pacureanu A, Raum K, Peyrin F. Priors for X-ray in-line phase tomography of heterogeneous objects. Philos Trans A Math Phys Eng Sci 2014;372:20130129
  • Hesse B, Langer M, Varga P, Pacureanu A, Dong P, Schrof S, Mannicke N, Suhonen H, Olivier C, Maurer P, Kazakia GJ, Raum K, Peyrin F. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron microCT study. PLoS One 2014;9:e88481
  • Zaoui A. Continuum micromechanics: survey. J Eng Mech ASCE 2002;128:808–16
  • Grimal Q, Raum K, Gerisch A, Laugier P. Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Engin 2008;11:147–57
  • Grimal Q, Rus G, Parnell WJ, Laugier P. A two-parameter model of the effective elastic tensor for cortical bone. J Biomech 2011;44:1621–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.