248
Views
9
CrossRef citations to date
0
Altmetric
Review

An overview of recent patents on musculoskeletal interface tissue engineering

, , &
Pages 53-67 | Received 22 Apr 2015, Accepted 31 Aug 2015, Published online: 12 Jan 2016

References

  • Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments – an adaptation to compressive load. J Anat 1998; 193(Pt. 4):481–94.
  • Woo SLY, Abramowitch SD, Kilger R, Liang R. Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 2006;39(1):1–20.
  • Trotter JA. Structure–function considerations of muscle–tendon junctions. Comp Biochem Physiol Part A Mol Integr Physiol 2002;133(4):1127–33.
  • Hoemann CD, Lafantaisie-Favreau C-H, Lascau-Coman V, Chen G, Guzmán-Morales J. The cartilage-bone interface. J Knee Surg 2012;25(2):85–97.
  • Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 2004;86(2):219–24.
  • Thomopoulos S, Williams GR, Soslowsky LJ. Tendon to bone healing: differences in biomechanical, structural, and compositional properties due to a range of activity levels. J Biomech Eng 2003;125(1):106–13.
  • Silva MJ, Thomopoulos S, Kusano N, Zaegel MA, Harwood FL, Matsuzaki H, Havlioglu N, Dovan TT, Amiel D, Gelberman RH. Early healing of flexor tendon insertion site injuries: tunnel repair is mechanically and histologically inferior to surface repair in a canine model. J Orthopaedic Res 2006;24(5):990–1000.
  • Moffat KL, Wang INE, Rodeo SA, Lu HH. Orthopaedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 2009;28(1):157–76.
  • Schiavone Panni A, Fabbriciani C, Delcogliano A, Franzese S. Bone-ligament interaction in patellar tendon reconstruction of the ACL. Knee Surg Sports Traumatol Arthrosc 1993;1(1):4–8.
  • Schneider H. [Structure of tendon attachments]. Z Anat Entwicklungsgesch 1956;119(5):431–56.
  • Weiler A, Scheffler S, Apreleva M. Healing of ligament and tendon to bone. In Walsh WR, ed. Repair and regeneration of ligaments, tendons, and joint capsule. Orthopedic Biology and Medicine. New York: Humana Press; 2006; pp. 201–31.
  • Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat 2006;208(4):471–90.
  • Newman AP. Articular cartilage repair. Am J Sports Med 1998;26(2):309–24.
  • Allan KS, Pilliar RM, Wang J, Grynpas MD, Kandel RA. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng 2007;13(1):167–77.
  • Bailey AJ, Shellswell GB, Duance VC. Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature 1979;278(5699):67–9.
  • Ramirez F, Rifkin DB. Cell signaling events: a view from the matrix. Matrix Biol 2003;22(2):101–7.
  • Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004;84(2):649–98.
  • Chiquet M, Renedo AS, Huber F, Flück M. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 2003;22(1):73–80.
  • Flück M, Carson JA, Gordon SE, Ziemiecki A, Booth FW. Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 1999;277( 1, Pt. 1):C152–62.
  • Gordon SE, Flück M, Booth FW. Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 2001;90(3):1174–83; discussion 65.
  • Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2012;2(2):53–63.
  • Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 2013;15(1):201–26.
  • Brown KRU, Yuan Jenny J (US), Li Yufu (US), Zimmermann Mark C (US), inventor; ETHICON INC (US), assignee. Porous ceramic/porous polymer layered scaffolds for the repair and regeneration of tissue patent EP1270025 B1, 2006.
  • Pavesio A, Callegaro L, inventors; Fidia Advanced Biopolymers S.R.L. Pavesio, Alessandra Callegaro, Lanfranco, assignee. Grafts for the repair of osteochondral defects patent US7968111 B2, 2011.
  • Athanasiou KA, Boyan Barbara D, inventor; Board Of Regents, The University Of Texas System, assignee. Multi-phase bioerodible implant/carrier and method of manufacturing and using same patent US5607474 A, 1993.
  • Lu Helen H (US) Jju, Hung Clark T (US), Guo X Edward (US), Ateshian Gerard (US), inventor; Ethicon, Inc, assignee. Polymer-ceramic-hydrogel composite scaffold for osteochondral repair. US2006.
  • Tampieri A, Pressato D, De Luca C, Di Fede S, inventors; Fin-Ceramica Faenza S.P.A., assignee. Cartilaginiform and osteochondral sustitute comprising a multilayer structure and use thereof2009.
  • Gleeson JP, Levingstone TJ, O’Brien FJ, inventor; Royal College of Surgeons in Ireland (Dublin, IE), assignee. Process for producing a multi-layered scaffold suitable for osteochondral repair patent US8613943 B2, 2013.
  • Lu HHS, Jeffrey inventor; The Trustees of Columbia University in the City of New York (New York, NY, US) assignee. Fully synthetic implantable multi-phased scaffold patent US8753391 B2, 2014.
  • Laurencin CT, Aronson Mark T, Nair Lakshmi Sreedharan, inventor; Soft Tissue Regeneration, Inc, assignee. Mechanically competent scaffold for ligament and tendon regeneration patent US8486143 B2, 2014.
  • Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech 2007;40(4):750–65.
  • Niederauer GG, Slivka MA, Leatherbury NC, Korvick DL, Harroff HH, Ehler WC, Dunn CJ, Kiesetter K. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 2000;21(24):2561–74.
  • Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, Mainil-Varlet P. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials 2004;25(17):3681–8.
  • Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 2009;15(2):127–41.
  • Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 2012;16(10):2247–70.
  • Mauck RL, Wang CCB, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 2003;11(12):879–90.
  • Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res Part A 2003;64A(3):465–74.
  • Soo Kim B, Ji Kim E, Suk Choi J, Hoon Jeong J, Hyunchul Jo C, Woo Cho Y. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J Biomed Mater Res A 2014 Nov;102(11):4044–54.
  • Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 2008;29(26):3539–46.
  • Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A 2003;67(2):618–25.
  • Laurencin CT, Freeman JW. Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 2005;26(36):7530–6.
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–89.
  • Vyakarnam MN, Zimmerman MC, Scopelianos AG, Chun I, Melican MC, Bazilio CA, Roller MB, Gorky DV, inventors; Ethicon, Inc. (Somerville, NJ, US), assignee. Foam composite for the repair or regeneration of tissue patent US7112417 B2, 2006. ( US)
  • Yannas I, Gibson L, O’Brien F, Harley B, Brau R, Samouhos S, Spector M, inventors; Yannas Ioannis V, assignee. Gradient scaffolding and methods of producing the same patent US20060121609 A1, 2006 2006/06/08/.
  • Qiu Q-Q, Cohen C, Ducheyne P, inventors; Gentis Inc., assignee. Bioactive, resorbable scaffolds for tissue engineering patent US20050118236 A1, 2005 2005/06/02/.
  • Hai-Quan M, Kuan CM, Leong KW, inventors; Mao Hai-Quan, assignee. Biofunctional fibers patent US7524513 B2, 2009 2009/04/28/.
  • Vepari C, Kaplan DL, Vunjak-novakovic G, inventorsCovalently immobilized protein gradients in three-dimensional porous scaffolds2013.
  • Detamore MS, Milind; Scurto, Aaron M.; Berkland, Cory inventor; The University of Kansas (Lawrence, KS, US) assignee. Method of preparing a tissue engineering scaffold comprising a plurality of microspheres linked together patent US8669107 B2, 2014.
  • Kaplan DLM, Biman B., inventor; Trustees of Tufts College (Medford, MA, US) assignee. Multilayered silk scaffolds for meniscus tissue engineering patent US8986380 B2, 2015.
  • Lu HH, Vaeroy H, Dionisio K, inventors; The Trustees of Columbia University in the City of New York (New York, NY, US), assignee. Multi-phased, biodegradable and osteointegrative composite scaffold for biological fixation of musculoskeletal soft tissue to bone patent US7767221 B2, 2010.
  • Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 2004;32(12):1728–43.
  • Oh SH, Park IK, Kim JM, Lee JH. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007;28(9):1664–71.
  • Huang C, Yannas IV. Mechanochemical studies of enzymatic degradation of insoluble collagen fibers. J Biomed Mater Res 1977;11(1):137–54.
  • Dagalakis N, Flink J, Stasikelis P, Burke JF, Yannas IV. Design of an artificial skin. Part III. Control of pore structure. J Biomed Mater Res 1980;14(4):511–28.
  • Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Progr Polym Sci 2007;32(7):698–725.
  • Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 2009;134(2):81–90.
  • Dewez JL, Lhoest JB, Detrait E, Berger V, Dupont-Gillain CC, Vincent LM, Schneider YJ, Bertrand P, Rouxhet PG. Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials 1998;19(16):1441–5.
  • Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: a novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res Part B Appl Biomater 2008;86(2):396–406.
  • Shi X, Wang Y, Varshney RR, Ren L, Gong Y, Wang D-A. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Eur J Pharm Sci 2010;39(1–3):59–67.
  • Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 2010;31(14):4113–20.
  • Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, Kwon IC. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. J Control Release 2003;91(3):365–74.
  • Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338(6109):917–21.
  • Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA. Matrix development in self-assembly of articular cartilage. PLoS One 2008;3(7):e2795. doi:10.1371/journal.pone.0002795
  • Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng 2007;13(9):2195–205.
  • Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 2013;15(1):115–36.
  • Forgacs GM, Francoise Suzanne; Norotte, Cyrille (Paris, FR) inventor; The Curators of the University of Missouri (Columbia, MO, US), assignee. Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same patent US8143055 B2, 2012.
  • Nakamura N, Matsuda H, Sawa Y, Taketani S, Miyagawa S, Yoshikawa H, Ando W, inventors; Norimasa Nakamura, assignee. Scaffold-free self-organized 3d synthetic tissue patent WO2005012512 A1, 2005 2005/02/10/.
  • Athanasiou KA, Aufderheide A, Hu J, inventors; Kyriacos A Athanasiou, assignee. A shape-based approach for scaffoldless tissue engineering patent WO2007115336 A3, 2008 2008/05/22/.
  • Larkin LMA, Ellen M.; Calve S; Kostriminova, Tatiana Y., inventor; The Regents Of The University Of Michigan (Ann Arbor, MI, US), assignee. System and method for forming skeletal muscle constructs having functional tissue interfaces patent US8097455 B2, 2012.
  • Chan PB, Cheng H, Chik TD, Cheung MK, Luk DK, inventors; The University Of Hong Kong, assignee. Methods for complex tissue engineering patent WO2011157057 A1, 2011 2011/12/22/.
  • Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res Part A 2008;86A(1):1–12.
  • Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL. Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am 2007;89(11):2485–97.
  • Manning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S. Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res 2011;29(7):1099–105.
  • Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP. A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomaterialia 2014;10(5):1996–2004.
  • Mandal BB, Park S-H, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials 2011;32(2):639–651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.