66
Views
49
CrossRef citations to date
0
Altmetric
Original Article

A study of some properties of mineralized turkey leg tendon

&
Pages 263-287 | Received 12 Jun 1991, Accepted 03 May 1992, Published online: 07 Jul 2009

References

  • Nylen M. U., Scott D. B., Mosley V. M. Mineralization of turkey leg tendon II. Collagen-mineral relations revealed by electron and x-ray microscopy. Calcification of Biological Systems, R. F. Sognnaes. AAAS, Washington, DC 1960; 129–242
  • White S. W, Hulmes D. J. S., Miller A., Timmins P. A. Collagen-mineral axial relationship in calcified turkey leg tendon by x-ray and neutron diffraction. Nature 1977; 266: 421–425
  • Landis W. J. A study of calcification in the leg tendons from the domestic turkey. J. Ultrastruct. Mol. Struct. Res. 1986; 94: 217–238
  • Berthet-Colominas C., Miller A., White S. W. Structural study of the calcifying collagen in turkey leg tendon. J. Mol. Biol. 1979; 134: 431–446
  • Traub W, Arad T., Weiner S. Three dimensional ordered distribution of crystals in turkey leg tendon collagen fibers. Proc. Natl. Acad. Sci. USA 1989; 86: 9822–9826
  • Eanes E. D., Lundy D. R., Martin G. N. X-ray diffraction study of the mineralization of turkey leg tendon. Calcif. Tiss. Res. 1970; 6: 239–248
  • Eanes E. D., Martin G. N., Lundy D. R. The distribution of water in calcified turkey leg tendon. Calcif. Tiss. Res. 1976; 20: 313–316
  • Bigi A., Riamonti A., Koch M. H. J., Roveri N. Calcified turkey leg tendon as structural model for bone mineralization. Int. J. Biol. Macromol. 1988; 10: 282–286
  • Bennett M. B., Stafford J. A. Tensile properties of calcified and uncalcified avian tendons. J. Zool. Lond. 1988; 214: 343–351
  • Lees S. Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Conn. Tiss. Res. 1987; 16: 281–303
  • Lees S., Heeley J. D., Cleary P. F. A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tiss. Int. 1979; 29: 107–117
  • Cusack S., Miller A. Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol. 1979; 135: 39–51
  • Lees S., Tao N. J., Lindsay S. M. Studies of compact hard tissues and collagen by means of Brillouin light scattering. 1990
  • Lees S., Davidson C. L. The role of collagen in the elastic properties of calcified tissues. J. Biomech. 1977; 10: 473–486
  • Landis W. J., Song M. J. Initial mineral deposition in calcifying tendon characterized by high voltage electron microscopy and 3-dimensional reconstruction. J. Struct. Biol. 1991; 107: 116–127
  • Lees S., Prostak K. The locus of mineral crystallites in bone. Connect. Tiss. Res. 1988; 18: 41–54
  • Lees S., Bonar L. C., Mook H. A. A study of dense mineralized tissues by neutron diffraction. Int. J. Biol. Macromol. 1984; 6: 321–326
  • Lees S. Water content in type I collagen tissues calculated from the generalized packing model. Int. J. Biol. Macromol. 1986; 8: 65–72
  • Weiner S., Price P. A. Disaggregation of bone into crystals. Calcif. Tiss. Int. 1986; 39: 365–375
  • Moradian-Oldak J., Weiner S., Addadi L., Landis W. J., Traub W. Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect. Tiss. Res. 1991; 25: 219–228
  • Weiner S., Traub W. Organization of Crystals in Bone. Mechanisms and Phylogeny of Mineralization in Biological Systems, S. Suga, H. Nakahara. Springer Verlag, Tokyo 1991, Ch. 2.21
  • Hulmes D. J. S., Miller A. Quasi-hexagonal molecular packing in collagen fibrils. Nature 1977; 282: 878–880
  • Prostak K., Skobe Z. Ultrastructure of the dental epithelium during enameloid mineralization in a Teleost fish, Cichlasoma Cyanoguttatum. Archs. Oral Biol. 1986; 31: 73–85
  • Lees S. Sonic velocity and the ultrastructure of mineralized tissues. Calcified Tissues, D. W. L. Hukins. Macmillan Press, London 1989, Ch 6
  • Pineri M., Escoubes M., Roche G. Water-collagen interactions: calorimetric and mechanical experiments. Biopolymers 1978; 17: 2799–2815
  • Lees S., Escoubes M. Vapor pressure isotherms, composition and density of hyperdense bones of horse, whale and porpoise. Connect. Tiss. Res. 1987; 16: 305–322
  • Prostak K., Seifert P, Skobe Z. Ultrastructure of developing teeth in the gar pike (Lepisosteus). Tooth Enamel V, R. W. Fearnhead. Florence Publishers, Yokohama 1989; 191
  • Herring J. M. The organic matter of bone. The Biochemistry and Physiology of Bone, G. H. Bourne. Academic Press, New York 1972; 132
  • Vaughan J. The Physiology of Bone, 3rd ed. Clarendon Press, Oxford 1981; 59
  • Moreno E. C., Kresak M., Hay D. I. Adsorption of salivary proteins onto Ca apatites. Biofouling 1991; 4: 3–24
  • Moreno E. C., Kresak M., Kane J. J., Hay D. I. Adsorption of proteins, peptides and organic acids from binary mixtures onto hydroxyapatite. Langmuir 1987; 3: 511–19
  • Hauschka P. V., Wians F. H. Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anatomical Record 1989; 224: 180–188
  • Landis W. L., Moradian-Oldak J., Weiner S. Topographical imaging of mineral and collagen in the calcifying turkey tendon. Conn. Tiss. Res. 1991; 25: 181–196
  • Katz E. P., Wachtel E., Yamauchi M., Mechanic G. L. The structure of mineralized collagen fibrils. Conn. Tiss. Res. 1989; 21: 149–158
  • Sarkar S. K., Sullivan E. S., Torchia D. A. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem. 1983; 258: 9762–7
  • Fratzl P., et al. Mineral crystals in calcified tissues: A comprehensive study by SAXS. J. Bone Min Res. 1992; 3: 329–334
  • Fratzl P., et al. Nucleation and growth of mineral crystals in bone studied by SAXS. Calcif. Tiss. Int. 1991; 48: 407–413
  • Lee D. D., Glimcher M. J. Three dimensional spatial relationship between the collagen fibrils and the inorganic calcium phosphate crystals of pickerel and herring bone. J. Mot. Biol. 1991; 217: 487–501
  • Katz E. P., Li S. T. Structure and function of bone collagen fibrils. J. Mol. Biol. 1973; 80: 1–15
  • Lees S., Mook H. A. Equatorial diffraction spacing as a function of water content in fully mineralized cow bone determined by neutron diffraction. Calcif. Tiss. Int. 1986; 39: 291–2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.