8
Views
0
CrossRef citations to date
0
Altmetric
Original Article

N-Terminal Sequence of a Core Protein from a Biglycan Isolated from Bovine Aorta

, , , &
Pages 125-132 | Received 09 Aug 1993, Accepted 06 Jul 1994, Published online: 07 Jul 2009

References

  • Berenson G. S., Radhakrishnamurthy B., Dalferes E. R., Jr., Srinivasan S. R. Carbohydrate macromolecules and atherosclerosis. Hum. Pathol. 1971; 2: 57–59
  • Wight T. N. Progress in Hemostasis and Thrombosis. Vessel Proteoglycans and Thrombosis. T. H. Spaet, Grune and Stratton, New York 1980; Vol. 5: 1–39
  • Camejo G. Interaction of lipids, lipoproteins with intercellular matrix of arterial tissues: Its possible role in atherogenesis. Adv. Lipid Res. 1982; 19: 1–53
  • Berenson G. S., Radhakrishnamurthy B., Srinivasan S. R., Vijayagopal P., Dalferes E. R., Jr., Sharma C. Recent advances in molecular pathology: Carbohydrates-protein macro-molecules and arterial wall integrity—A role in atherogenesis. Exp. Mol. Pathol. 1984; 41: 267–287
  • Wagner W. D. Proteoglycan structure and function as related to atherosclerosis. Ann. N.Y. Acad. Sci. 1985; 454: 52–68
  • Ruoslahti E. Proteoglycans in cell regulation. J. Biol. Chem. 1989; 264: 13369–13372
  • Sage E. H., Bornstein P. Extracellular proteins that modulate cell-matrix interactions. SPARC, tenasein and thrombospondin. J. Biol. Chem. 1991; 266: 14831–14834
  • Ehrlich K., Radhakrishnamurthy B., Berenson G. S. Isolation of a chondroitin sulfate-dermatan sulfate proteoglycan from bovine aorta. Arch. Biochem. Biophys. 1975; 171: 361–369
  • Vijayagopal R., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Hemostatic properties and serum lipoprotein binding of a heparan sulfate proteoglycan from bovine aorta. Biochem. Biophys. Acta 1983; 758: 70–83
  • Oegema T. R., Jr., Hascall V. C., Eisenstein R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J. Biol. Chem. 1979; 254: 1312–1318
  • McMurtrey J., Radhakrishnamurthy B., Dalferes E. R., Jr., Berenson G. S., Gregory J. R. Isolation of proteoglycanhyaluronate complexes from bovine aorta. J. Biol. Chem. 1979; 254: 1621–1626
  • Vijayagopal P., Radhakrishnamurthy B., Srinivasan S. R., Berenson G. S. Isolation and characterization of a link protein from bovine aorta. Proteoglycan aggregate. Biochem. Biophys. Acta 1985; 839: 110–118
  • Vogel K. G., Heinegard D. Characterization of proteoglycans from adult bovine tendon. J. Biol. Chem. 1985; 260: 9298–9306
  • Pearson C. H., Winterbottom N., Fachse D. S., Scott P. P. The NH2-terminal amino acid sequence of bovine skin proteoglycan sulfate. J. Biol. Chem. 1983; 258: 15101–15104
  • Chang Y., Yanagishita M., Hascall V. C., Wight T. N. Proteoglycans synthesis by smooth muscle cells derived from monkey (Macaca nemestrina) aorta. J. Biol. Chem. 1983; 258: 5679–5688
  • Kinsella M. G., Wight T. N. Isolation and characterization of dermatan sulfate proteoglycans synthesized by bovine aortic endothelial cells. J. Biol. Chem. 1988; 263: 19222–19231
  • Marcum J. A., Thompson M. A. The amino-terminal region of a proteochondroitin core protein secreted by aortic smooth muscle cells share sequence homology with the prepeptide region of the biglycan core protein from human bone. Biochem. Biophys. Res. Commun. 1991; 175: 706–712
  • Neame R. J., Choi H. U., Rosenberg L. C. The primary structure of the core protein of the small leucine-rich proteoglycan (PGI) from bovine articular cartilage. J. Biol. Chem. 1989; 264: 8653–8661
  • Stöcker G., Meyer H. E., Wagener C., Greiling H. Purification and N-terminal amino acid sequence of a chondroitin sulphate/dermatan sulphate proteoglycan isolated from intima/media preparation of human aorta. Biochem. J. 1991; 274: 415–420
  • Heinegard D., Björne-Persson A., Cöster L., Franzen A., Gardell S., Malström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem. J. 1985; 230: 181–194
  • Fisher L. W., Hawkins G. R., Tuross N., Termine J. D. Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from mineral compartment of developing human bone. J. Biol. Chem. 1987; 262: 9702–9708
  • Fisher L. W., Termine J. D., Young M. F. Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several non-connective tissue proteins in variety species. J. Biol. Chem. 1989; 264: 4571–4576
  • Dreher K. L., Asundi V., Matzura D., Cowan K. Vascular smooth muscle biglycan represents a high conserved proteoglycan within the arterial wall. Eur. J. Cell. Biol. 1990; 53: 296–304
  • Radhakrishnamurthy B., Jeansonne N., Berenson G. S. Organization of glycosaminoglycan chains in a chondroitin sulfate-dermatan sulfate proteoglycan from bovine aorta. Biochim. Biophys. Acta 1986; 882: 85–96
  • Iwata M., Carlson S. S. A large chondroitin sulfate basement membrane associated proteoglycan exists as disulfide-stabilized complex of several proteins. J. Biol. Chem. 1991; 266: 323–333
  • Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acid. Anal. Biochem. 1973; 54: 484–489
  • Rosenberg L. C., Choi H. U., Tang L-H., Johnson T. L., Pal S., Webber C., Reiner A., Pool A. R. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J. Biol. Chem. 1985; 260: 6304–6313
  • Schagger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987; 166: 368–379
  • Hunkapiller M. W., Ostrander E. L. F., Hord L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Meth. Enzymol. 1983; 91: 227–236
  • Moos M., Jr., Nguyen N. Y., Liu T. Y. Reproducible high yield sequencing of proteins electrophoretically separated and transferred to an inert support. J. Biol. Chem. 1988; 263: 6005–6008
  • Kyhse-Anderson J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. Biochem. Biophys. Method 1984; 10: 203–209
  • Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 1987; 262: 10035–10038
  • Reig J. A., Klein D. C. Submicrogram quantities of unstained proteins are visualized on polyvinylidene difluoride membrane by transillumination. Appl. Theoret. Electrophoresis 1988; 1: 59–60
  • Coull J. M., Pappin D. J. C. A rapid fluorescent staining procedure for proteins electroblotted onto PVDF membrane. J. Protein Chem. 1990; 9: 259–260
  • Radhakrishnamurthy B., Jeansonne N., Tracy R. E., Berenson G. S. A monoclonal antibody that recognizes hyaluronic acid binding region of aorta proteoglycans. Atherosclerosis 1993; 98: 179–192
  • Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. A rapid sensitive method for detection of alkaline phosphatase conjugated antibody on western blots. Anal. Biochem. 1984; 136: 175–179
  • Simpson R. J., Moritz R. L., Begg G. S., Rubira M. R., Nice E. C. Micropreparative procedures for high sensitivity sequencing of peptides and proteins. Anal. Biochem. 1989; 177: 221–236
  • Moore S., Stein W. H. Determination of amino acids. Methods in Enzymology 1963; 6: 819
  • Nakazawa M., Manabe K. The direct hydrolysis of proteins containing tryptophan on polyvinylidene difluoride membrane by mercaptoethane-sulfonic acid in the vapor phase. Anal. Biochem. 1992; 206: 105–108
  • Brown R. E., Jarvis K. L., Hyland K. J. Protein measurement using bicinchoninic acid elimination of interfering substances. Anal. Biochem. 1989; 180: 136–139
  • Lee G. J-L., Tieckelmann H. High performance liquid chromatographic determinations of disaccharides resulting from enzymatic degradation of isomeric chondroitin sulfates. Anal. Biochem. 1979; 94: 231–236
  • Register T., Wagner W. D., Robbins R. A., Lively M. O. Structural properties of and partial protein sequence analysis of the major dermatan sulfate proteoglycan of pigeon aorta. Atherosclerosis 1993; 98: 99–111
  • Torok M. A., Evans S. A. S., Marcum J. A. cDNA sequence for bovine biglycan (PGI) protein core. Biochim. Biophys. Acta 1993; 1173: 81–84
  • Fransson L. A. Interactions between dermatan sulfate chains:I. Affinity chromatography of copolymeric galactosamino-glycans on dermatan sulfate substituted agarose. Biochim. Biophys. Acta 1976; 473: 106–115
  • Fransson L. A., Cöster L. Interactions between dermatan sulfate chain: II. Structural studies on aggregating glycan chains and oligosaccharides with affinity for dermatan sulfate-sub-stituted agarose. Biochim. Biophys. Acta 1979; 582: 132–144
  • Cöster L., Fransson L. A., Seehan J., Nieduszynski I. A., Phelps C. R. Self association of dermatan sulfate proteoglycans from bovine sclera. Biochem. J. 1981; 197: 483–490
  • Poole A. B., Webber C., Pidoux I., Choi H., Rosenberg L. C. Localization of a dermatan sulfate proteoglycan (DS-PGII) in cartilage and the presence of an immunologically related species in other tissues. J. Histochem. Cytochem. 1986; 34: 619–624
  • Sobue M., Nakashima N., Fukatsu T., Nagasaka T., Katoh T., Ogura T., Takeuchi J. Production and characterization of monoclonal antibody to dermatan sulfate proteoglycan. J. Histochem. Cytochem. 1988; 36: 479–485
  • Riessen R., Isner J. M., Blessing E., Loushin C., Nikol S., Wight T. Regional differences in the distribution of the proteoglycans, biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am. J. Pathol. 1994; 144: 962–974
  • Yamaguchi Y., Mamm D. M., Ruoslahti E. Negative regulation of transforming growth factor-B by the proteoglycan decorin. Nature 1990; 346: 281–284

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.