30
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Heparin Sensitive and Resistant Vascular Smooth Muscle Cells: Biology and Role in Restenosis

, &
Pages 87-103 | Received 01 Apr 1997, Accepted 05 Aug 1997, Published online: 07 Jul 2009

References

  • Casu B. Structure of heparin and heparin fragments. Ann. N.Y. Acad. Sci. 1989; 556: 1–17
  • Hascall V. C., Heinegard D. K., Wight T. N. Proteoglycans: metabolism and pathology. Cell Biology of Extracellular Matrix, E. B. Hay. Plenum Press, New York 1991; 149–172
  • Lindahl U., Hook M. Glycosaminoglycans and their binding to biological macromolecules. Ann. Rev. Biochem. 1978; 47: 385–417
  • Lindahl U., Kusche M., Lidholt K., Oscarsson L. G. Biosynthesis of heparin and heparan sulfate. Ann. N.Y. Acad. Sci. 1989; 556: 36–50
  • Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J. Biol. Chem. 1993; 268: 23898–23905
  • Walker A., Turnbull J. E., Gallagher J. T. Specific heparan sulfate saccharides mediate the activity of basic fibroblast growth factor. J. Biol. Chem. 1994; 269: 931–935
  • Parthasarathy N., Goldberg I. J., Sivaram P., Mulloy B., Flory D. M., Wagner W. D. Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase. J. Biol. Chem. 1994; 269: 22391–22396
  • David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993; 7: 1023–1030
  • Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 1991; 71: 481–539
  • Karnovsky M. J., Wright T. C., Jr., Castellot J. J., Jr., Chaoy J., Lormeau J. C., Petitou M. Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Heparin and Related Polysaccharides Structure and Activities, B. Bolland. N.Y. Acad. Sci., New York 1989; vol. 556: 268–281
  • Lippman M. M. Glycosaminoglycans and cell division. Epithelial Mensenchymal Interactions, R. Fleischmajer, R. E. Billngham. Williams & Wilkins, Baltimore 1968; 208–229
  • Ross R., Glomset J. A. The pathogenesis of atherosclerosis: Parts I and II. New. Engl. J. Med. 1976; 295: 369–377, 420-425.
  • Clowes A. W., Karnovsky M. J. Suppression by heparin of smooth muscle proliferation in injured arteries. Nature 1977; 265: 625–626
  • Guyton J. R., Rosenberg R. D., Clowes A. W., Karnovsky M. J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. Circ. Res. 1980; 46: 625–634
  • Castellot J. J., Jr., Addonizio M., Rosenberg R., Karnovsky M. J. Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell Biol. 1981; 90: 372–379
  • Castellot J. J., Jr., Beeler D. L., Rosenberg R. D., Karnovsky M. J. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J. Cell. Physiol. 1984; 120: 315–320
  • Wright T. C., Castellot J. J., Jr., Petitou M., Lormeau J. C., Choay J., Karnovsky M. J. Structural determinants of heparin's growth inhibitory activity. J. Biol. Chem. 1989; 264: 1534–1542
  • Schmidt A., Yoshida K., Buddeck E. The antiproliferative activity of arterial heparan sulfate enriched with 2-O-Sulfated uronic acid residues. J. Biol. Chem. 1992; 267: 19242–19247
  • Fritze L. M., Reilly C. F., Rosenberg R. D. An antiproliferative heparan sulfate species produced by postcon-fluent smooth muscle cells. J. Cell Biol. 1985; 100: 1041–1049
  • Edwards J. J., Wagner W. D. Cell surface heparan sulfate proteoglycan and chondroitin sulfate proteoglycan of arterial smooth muscle cells. Am. J. Path. 1992; 140: 193–205
  • Lawler J., Slayter H. The release of heparin binding peptides from platelet thrombospondin by proteolytic action of thrombin, plasmin, and trypsin. Thromb. Res. 1981; 22: 267–279
  • Sakashita S., Engvall E., Ruoslahti E. Basement membrane glycoprotein laminin binds to heparin. FEBS Letters 1980; 116: 243–246
  • Keller K. M., Keller J. M., Kuhn K. The C-terminus of type 1 collagen is a major binding site for heparin. Biochem. Biophys. Acta. 1986; 882: 1–5
  • San Antonio J. D., Lander A. D., Karnovsky M. J., Slayter H. S. Mapping the heparin-binding sites on type I collagen monomers and fibrils. J. Cell Biol. 1994; 125: 1179–1188
  • San Antonio J. D., Karnovsky M. J., Gay S., Sanderson R. D., Lander A. D. Interactions of syndecan-1 and heparin with human collagens. Gycobiol. 1994; 4: 327–332
  • Lark M. W., Culp L. A. Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites, affinity fractionation on columns of platelet factor 4, plasma fibronectin and octyl-sepharose. J. Biol. Chem. 1984; 259: 6773–6782
  • Woods A., Couchman J. R., Johansson S., Hook M. Adhesion and cytoskeletal organization of fibroblasts in response to fibronectin fragments. EMBO J. 1986; 5: 665–670
  • Gill P. J., Silbert C. K., Silbert J. E. Effects of heparan sulfate removal on attachment of fibroblasts and endothelial cells. Biochem. 1986; 25: 405–410
  • Brennan M. J., Oldberg A., Hayman E. G., Ruoslathi E. Effect of a proteoglycan produced by rat tumor cells on their adhesion to fibronectin-collagen substrata. Cancer Res. 1983; 43: 4302–4307
  • San Antonio J. D., Lander A. D., Wright T. C., Karnovsky M. J. Heparin inhibits the attachment and growth of Balb c/3T3 fibroblasts on collagen substrata. J. Cell. Physiol 1992; 150: 8–16
  • Piepkorn M. W., Chapman D. L. Glycosamino-glycans and the substrate attachment of murine myeloma, 3T3, and cutaneous fibrosarcoma cells. Lab. Invest. 1985; 53: 22–29
  • O'Neill C., Jordan P., Ireland G. Evidence for two distinct mechanisms of anchorage stimulation in freshly explanted and 3T3 Swiss mouse fibroblasts. Cell 1986; 44: 489–496
  • Campisi J., Medrana E. E. Cell cycle perturbations in normal and transformed Fibroblasts caused by detachment from the substratum. J. Cell. Physiol. 1983; 114: 53–60
  • Liau G., Chan L. M. Regulation of extracellular matrix RNA levels in cultured smooth muscle cells. J. Biol. Chem. 1989; 264: 10315–10320
  • Brown C. C., Balian G. Effect of heparin on synthesis of short chain collagen by chondrocytes and smooth muscle cells. J. Cell Biol. 1987; 105: 1007–1012
  • Majack R. A., Bornstein P. Heparin regulates the collagen phenotype of vascular smooth muscle cells: induced synthesis of an Mr 60,000 collagen. J. Cell Biol. 1985; 100: 613–619
  • El Nabout R., Martin M., Remy J., Robert L., LaFuma C. Heparin fragments modulate the collagen phenotype of fibroblasts from radiation induced subcutaneous fibrosis. Exp. Molec. Path. 1989; 51: 111–122
  • Gavriel P., Kagan H. M. Inhibition by heparin of the oxidation of lysine in collagen by lysyl oxidase. Biochem. 1988; 27: 2811–2815
  • Majack R. A., Coates-Cook S., Bornstein P. Platelet-derived growth factor and heparin-like glycosamino-glycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells. J. Cell Biol. 1985; 101: 1059–1070
  • Majack R. A., Goodman L. V., Dixit V. M. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J. Cell Biol. 1988; 106: 415–422
  • Wight T. Proteoglycans in pathological conditions: atherosclerosis. Fed. Proc 1985; 44: 381–385
  • Wight T. Cell biology of arterial proteoglycans. Arterioscl. 1995; 9: 1–20
  • Snow A. D., Bolender R. P., Wight T. N., Clowes A. W. Heparin modulates the composition of the extracellular matrix domain surrounding arterial smooth muscle cells. Am. J. Path. 1990; 137: 313–330
  • Potter-Pergio S., Wight T. Heparin causes the accumulation of heparan sulfate in cultures of arterial smooth muscle cells. Arch. Biochem. Biophys. 1996; 336: 19–26
  • Castellot J. J., Jr., Wong K., Herman R. L., Hoover D. F., Albertini T. C., Wright T. C. Binding and internalization of heparin by vascular smooth muscle cells. J. Cell. Physiol. 1985; 124: 13–20
  • Stavenow L., Lindblad B., Xu C. B. Unfractionated heparin and low molecular weight heparin do not inhibit the growth of proliferating human arterial smooth muscle cells in culture. Eur. J. Vase. Endovasc. Surg. 1995; 10(2)215–219
  • Castellot J. J., Jr., Pukac L. A., Caleb B. L., Wright T. C., Karnovsky M. J. Heparin selectively inhibits a protein kinase C dependent mechanism of cell cycle progression in calf aortic smooth muscle cells. J. Cell Biol. 1989; 109: 3147–3156
  • Dahlberg C., Thompson B., Joseph P., Garg H., Spence C., Quinn D., Boventre J., Hales C. Differential effect of three commercial heparins on Na+/H+ exchange and growth of PASMC. Am. J. Physiol. 1996; 270: L260–L265
  • Pukac L., Carter J., Ottlinger M. E., Karnovsky M. J. Mechanisms of inhibition by heparin of PDGF stimulated MAP kinase activation in vascular smooth muscle cells. J. Cell. Physiol. 1997; 172: 69–78
  • Ottlinger M. E., Pukac L. A., Karnovsky M. J. Heparin inhibits mitogen-activated protein kinase activation in intact rat vascular smooth muscle cells. J. Biol. Chem. 1993; 268: 19173–19176
  • Pukac L. A., Ottlinger M. E., Karnovsky M. J. Heparin suppresses specific second messenger pathways for protooncogene expression in rat vascular smooth muscle cells. J. Biol. Chem. 1992; 267: 3707–3711
  • Wachi H., Seyama Y., Tajima S. Modulation of elastin expression by heparin is dependent on the growth condition of vascular smooth muscle cells: Up-regulation of elastin expression by heparin in the proliferating cells is mediated by the inhibition of protein kinase C activity. J. Biochem. 1995; 118(3)582–586
  • Herbert J. M., Clowes M., Lea H. J., Pascal M., Clowes A. W. Protein kinase C alpha expression is required for heparin inhibition of rat smooth muscle cell proliferation in vitro and in vivo. J. Biol. Chem. 1996; 271: 25928–25935
  • Pukac L. A., Castellot J. J., Wright T. C., Caleb B. L., Karnovsky M. J. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Reg. 1990; 1: 435–443
  • Miralem T., Wang A., Whiteside C. I., Templeton D. M. Heparin inhibits mitogen-activated protein kinase-dependent and -independent c-fos induction in mesangial cells. J. Biol. Chem. 1996; 271(29)17100–17106
  • Reilly C., Kindy M., Brown K., Rosenberg R., Sonenshein G. Heparin prevents vascular smooth muscle cell progression through G, phase of the cell cycle. J. Biol. Chem. 1989; 264: 6990–6995
  • Clowes A. W. Regulation of smooth muscle cell function by heparin. J. Vase. Surg. 1992; 15: 911–913
  • Fedarko N. S., Conrad H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J. Cell Biol. 1986; 102: 587–599
  • Busch S. J., Martin G. A., Barnhart R. L., Mano M., Cardin A. D., Jackson R. L. Trans-repressor activity of nuclear glycosaminoglycans of fos and jun/AP-1 oncoprotein-mediated transcription. J. Cell Biol. 1992; 116: 31–42
  • Castellot J. J., Jr., Cochran D., Karnovsky M. J. Effect of heparin on vascular smooth muscle cellsI. Cell metabolism. J. Cell. Physiol. 1985; 124: 21–28
  • Flint N., Cove F. L., Evans G. S. Heparin simulates the proliferation of intestinal epithelial cells in primary culture. J. Cell Sci. 1994; 107: 401–411
  • Groggel G. C., Marinides G. N., Hovingh P., Hamond E., Linker A. Inhibition of rat mesangial cell growth by heparan sulfate. Am. J. Physiol. 1990; F259–F265
  • Kimura I., Nagaura T., Naitoh T., Kobayashi S., Kimura M. Heparin inhibits the progression phase of subcultured endothelial cell proliferation in rat aorta. Jpn. J. Pharm. 1992; 60(4)369–375
  • Resink T. J., Scott-Burden T., Baur U., Burgin M., Buhler F. R. Decreased susceptibility of cultured smooth muscle cells from SHR rats to growth inhibition by heparin. 7. Cell. Physiol. 1989; 138: 137–144
  • Eccleston-Joyner C. A., Gray S. D. Arterial hypertrophy in the fetal and neonatal spontaneously hypertensive rat. Hypertension 1988; 12: 513–518
  • San Antonio J. D., Karnovsky M. J., Ottlinger M. E., Schillig R., Pukac L. A. Isolation of heparin-insensitive aortic smooth muscle cells. Arterioscl. Thromb. 1993; 13: 748–757
  • Barzu T., Herbert J. M., Desmouliere A., Carayon P., Pascal M. Characterization of rat aortic smooth muscle cells resistant to the antiproliferative activity of heparin following long-term heparin treatment. J. Cell. Physiol. 1994; 160: 239–248
  • Conroy S., Hart C., Perez-Reyes N., Giachelli C., Schwartz S., McDougall J. Characterization of human aortic smooth muscle cells expressing HPV16 E6 and E7 open reading frames. Am. J. Path. 1995; 147: 753–762
  • Reilly C. Rat vascular smooth muscle cells immortalized with SV40 large T antigen possess defined smooth muscle cell characteristics including growth inhibition by heparin. J. Cell. Physiol. 1990; 142: 342–351
  • Bennett M. R., Evan G. I., Newby A. C. Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of vascular smooth muscle cells by serum reduction, interferon-g, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ. Res. 1994; 74: 525–536
  • Caleb B. L., Hardenbrook M., Cherington V., Castellot J. J., Jr. Isolation of vascular smooth muscle cell cultures with altered responsiveness to the antiproliferative effect of heparin. J. Cell. Physiol. 1996; 167: 185–195
  • Bennett M. R., Littlewood T., Hancock D., Evan G. I., Newby A. C. Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth muscle cell proliferation: A signal for growth arrest?. Biochem. J. 1994; 302: 710–708
  • Fager G., Hansson G. K., Ottosson P., Dahllof B., Bondjers G. Human arterial smooth muscle cells in culture. Effects of platelet-derived growth factor and heparin on growth in vitro. Exp. Cell Res. 1988; 176: 319–335
  • Caplice N. M., West M. J., Campbell G. R., Campbell J. Inhibition of human vascular smooth muscle cell growth by heparin. The Lancet 1994; 344: 97–98
  • Stöhr S., Meyer T., Smolenski A., Kreuzer H., Buchwald A. B. Effects of heparin on aortic versus venous smooth muscle cells: similar binding with different rates of [3H]thymidine incorporation. J. Cardiovasc. Pharm. 1995; 25: 782–788
  • Chan P., Patel M., Betteridge L., Munro E., Schachter M., Wolfe J., Sever P. Abnormal growth regulation of vascular smooth muscle cells by heparin in patients with restenosis. The Lancet 1993; 341: 341–342
  • Chan P. Cell biology of human vascular smooth muscle. Ann. R. Coll. Surg. Engl. 1994; 76: 298–303
  • Refson J. S., Schachter M., Patel M. K., Chan P., Wolfe J. H. N., Sever P. Correlation of heparin binding with responsiveness in human vascular smooth muscle cells. Biochem. Soc. Trans. 1995; 23: 172S
  • Barzu T., Pascal M., Maman M., Roque C., LaFont F., Rousselet A. Entry and distribution of fluorescent antiproliferative heparin derivatives into rat vascular smooth muscle cells: Comparison between heparin-sensitive and heparin-resistant cultures. J. Cell. Physiol. 1996; 167: 8–21
  • Letoumeur D., Caleb B. L., Castellot J. J., Jr. Heparin binding, internalization, and metabolism in vascular smooth muscle cells:I. Upregulation of heparin binding correlates with antiproliferative activity. J. Cell. Physiol. 1995; 165: 676–686
  • Letoumeur D., Caleb B. L., Castellot J. J., Jr. Heparin binding, internalization, and metabolism in vascular smooth muscle cells: II. Degradation and secretion in sensitive and resistant cells. J. Cell. Physiol. 1995; 165: 687–695
  • Sartore S., Scatena M., Chiavegato A., Faggin E., Giuriato L., Pauletto P. Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodeling. J. Vasc. Res. 1994; 31: 61–81
  • Dartsch P. C., Voisard R., Bauriedel G., Hofling B., Betz E. Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary, stenosing and restenosing lesions. Arterioscl. 1990; 10: 62–75
  • Schwartz S. M., Foy L., Bowen-Pope D. F., Ross R. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am. J. Path. 1990; 136: 1417–1428
  • Blaes N., Bourdillon M. C., Lamaziere J. M. D., Michaille J. J., Anduiar M., Covacho C. Isolation of two morphologically distinct cell lines from rat arterial smooth muscle expressing high tumorigenic potentials. In Vitro Cell Dev. Biol. 1991; 27A: 725–734
  • Bondjers G., Glukhova M., Hansson G. K., Postnov Y. V., Reidy M. A., Schwartz S. M. Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause?. Circ. 1991; 84: VI-2–VI-16
  • Desmouliere A., Rubbia-Brandt L., Grau G., Gabbiani G. Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab. Invest. 1992; 67(6)716–726
  • Gibbons G. H., Dzau V. J. Molecular therapies for vascular diseases. Science 1996; 212: 689–693
  • Davies M. G., Hagen P. O. Pathobiology of inti-mal hyperplasia. Brit. J. Surg. 1994; 81: 1254–1269
  • Ellis S. G., Roubin G. S., Wilentz J., Douglas J. S., King S. B. Effect of 18- to 24-hour heparin administration for prevention of restenosis after uncomplicated coronary angioplasty. Am. Heart J. 1989; 117: 777–782
  • Brack M. J., Ray S., Chauhan A., Fox J., Hubner P. J. B., Schofield P., Harley A., Gershlick A. H. The subcutaneous heparin and angioplasty restenosis prevention (SHARP) trial. Return of a multicenter randomized trial investigating the effects of high dose unfractionated heparin on angiographic restenosis and clinical outcome. J. Am. Coll. Cardio. 1995; 26(4)947–954
  • Lehmann K. G., Doria R. J., Feuer J. M., Hall P. X., Hoang D. T. Paradoxical increase in restenosis rate with chronic heparin use: final results of a randomized trial. J. Am. Coll. Cardiol. 1991; 17: 181A
  • Boneau B., Dol F., Caranobe C., Sie P., Houin G. Pharmacokinetics of heparin and related polysaccharides. Ann. N. Y. Acad. Sci. 1989; 556: 282–291
  • Edelman E., Karnovsky M. J. Contrasting effects of the intermittent and continuous administration of heparin in experimental restenosis. Circ 1994; 89: 770–776
  • Hajjar D. P. Viral pathogenesis of atherosclerosis. Am. J. Path. 1991; 39: 1195–1211
  • Koyama H., Reidy M. A. Reinjury of arterial lesions induces intimal smooth muscle cell replication that is not controlled by fibroblast growth factor 2. Circ. Res. 1997; 80: 408–417

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.