352
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Myocardial Contractile Response and IP3, cAMP and cGMP Interrelationships

An experimental study in the perfused working normal and pressure overloaded rat heart. A mini review based on a doctoral thesis

Pages 1-34 | Published online: 18 Jan 2010

References

  • Adelstein R. S. Regulation of contractile proteins by phosphorylation. J Clin Invest 1983; 72: 1863–6
  • Ågren G., Ponten J., Ronquist G., Westermark B. Nucleoside diphosphate kinase at the cell surface of neoplastic human cells in culture. J Cell Physiol 1974; 83: 91–101
  • Ahlquist R. P. A study of the adrenotropic receptors. Am J Physiol 1948; 153: 586–600
  • Alpert N. R., Mulieri L. A. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 1982; 50: 491–500
  • Atkinson D. E. Energy charge of the adenylate pool as a regulatory interaction with feedback modifiers. Biochemistry 1968; 7: 4030–4034
  • Berg I., Guse A. H., Gercken G. Carbamoylcholine-induced accumulation of inositol mono-, bis-, tris- and tetrakisphosphates in isolated cardiac myocytes from adult rats. Biochim Biophys Acta 1989; 1010: 100–7
  • Berridge M. J. Phosphatidylinositol hydrolysis and calcium signaling. Adv Cyclic Nucleotide Res 1981; 14: 289–99
  • Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 1983; 212: 849–58
  • Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345–60
  • Berridge M. J. Inositol trisphosphate and calcium oscillations. Adv Second Messenger Phosphoprotein Res 1992; 26: 211–23
  • Berridge M. J. Inositol trisphosphate and calcium signalling. Nature 1993; 361: 315–25
  • Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–21
  • Birnbaumer L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell 1992; 71: 1069–72
  • Brown J. H., Brown S. L. Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phosphoinositide metabolism. J Biol Chem 1984; 259: 3777–81
  • Brown J. H., Buxton I. L., Brunton L. L. Alpha 1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 1985; 57: 532–7
  • Brown J. H., Goldstein D. Differences in muscarinic receptor reserve for inhibition of adenylate cyclase and stimulation of phosphoinositide hydrolysis in chick heart cells. Mol Pharmacol 1986; 30: 566–70
  • Brown J. H., Masters S. B. Muscarinic regulation of phosphatidylinositol turnover and cyclic nucleotide metabolism in the heart. Fed Proc 1984; 43: 2613–7
  • Carlsson E., Hedberg A., Mattsson H. Classification and function of adrenoceptors. Catecholamines and the heart, W. Delius, E. Gerlach, H. Grobecker, W. Kübler. Springer-Verlag, Berlin Heidelberg New York 1981; 19–28
  • Cheung W. Y., Williamson J. R. Kinetics of cyclic adenosine monophosphate changes in rat heart following epinephrine administration. Nature 1965; 207: 979–81
  • Chevalier B., Mansier P., Callense A. F., Swynghedauw B. Beta-adrenergic system is modified in compensatory pressure cardiac overload in rats: physiological and biochemical evidence. J Cardiovasc Pharmacol 1989; 13: 412–20
  • Chinkers M., Garbers D. L. Signal transduction by guanylyl cyclases. Annu Rev Biochem 1991; 60: 533–75
  • Christiansen H. B., Horgmo G. I., Skomedal T., Osnes J. B. Enhancement of the alpha-adrenergic inotropic component of noradrenaline by simultaneous stimulation of muscarinic acetylcholine receptors in rat myocardium. Eur J Pharmacol 1987; 142: 93–102
  • Coleman D. E., Berghuis A. M., Lee E., Linder M. E., Gilman A. G., Sprang S. R. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 1994; 265: 1405–12
  • Cutilletta A. F., Rudnick M., Zak R. Muscle and non-muscle cell RNA polymerase activity during the development of myocardial hypertrophy. J Mol Cell Cardiol 1978; 10: 677–87
  • Dage R. C., Okerholm R. A. Pharmacology and pharmacokinetics of enoximone. Cardiology 1990; 3: 2–13
  • Delia B. V., De T. P., Grzeskowiak M., Vicentini L. M., Di V. F. Cyclic AMP inhibition of phosphoinositide turnover in human neutrophils. Biochim Biophys Acta 1986; 886: 441–7
  • Dobson J. G. Cyclic AMP-dependent activation of protein kinases in the myocardium. Catecholamines and the heart, W. Delius, E. Gerlach, H. Grobecker, W. Kübler. Springer-Verlag, Berlin Heidelberg New York 1981; 128–40
  • Edes I., Solaro R. J., Kranias E. G. Changes in phosphoinositide turnover in isolated guinea pig hearts stimulated with isoproterenol. Circ Res 1989; 65: 989–96
  • Ehrlich B. E., Watras J. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 1988; 336: 583–6
  • Endoh M., Blinks J. R. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through α- and β-adrenoceptors. Circ Res 1988; 62: 247–65
  • Endoh M., Hiramoto T., Ishihata A., Takanashi M., Inui J. Myocardial α1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ Res 1991; 68: 1179–90
  • Endoh M., Maruyama M., Iijima T. Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. Am J Physiol 1985; 249: H309–20
  • England P. J. Studies on the phosphorylation of the inhibitory subunit of troponin during modification of contraction in perfused rat heart. Biochem J 1976; 160: 295–304
  • Ericson A., Niklasson F., de Verdier C. A systematic study of nucleotide analysis of human erythrocytes using an anionic exchanger and HPLC. Clin Chim Acta 1983; 127: 47–59
  • Everaerts F. M., Beckers J. L., Verheggen T. P. Some theoretical and practical aspects of isotachophoretical analysis. Ann N Y Acad Sci. 1973; 209: 419–44
  • Fabiato A., Fabiato F. Dependence of calcium release, tension generation and restoring forces on sarcomere length in skinned cardiac cells. Eur J Cardiol 1976
  • Fabiato A., Fabiato F. Calcium release from the sarcoplasmic reticulum. Circ Res 1977; 40: 119–29
  • Gilman A. G. G proteins and dual control of adenylate cyclase. Cell 1984; 36: 577–9
  • Gilman A. G. G proteins: Transducers of receptor-generated signals. Ann Rev Biochem 1987; 56: 615–49
  • Gilman A. G. The Albert Lasker Medical Awards. G proteins and regulation of adenylyl cyclase. Jama 1989; 262: 1819–25
  • Gorza L., Mercadier J. J., Schwartz K., Thornell L. E., Sartore S., Schiaffino S. Myosin types in the human heart. An immunofluorescence study of normal and hypertrophied atrial and ventricular myocardium. Circ Res 1984; 54: 694–702
  • Gu X., Bishop S. P. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ Res 1994; 75: 926–31
  • Hammond H. K., Roth D. A., Insel P. A., Ford C. E., White F. C., Maisel A. S., Ziegler M. G., Bloor C. M. Myocardial β-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion. Circulation 1992; 85: 269–80
  • v. Harsdorf R., Lang R. E., Fullerton M., Woodcock E. A. Myocardial stretch stimulates phosphatidylinositol turnover. Circ Res 1989; 65: 494–501
  • Herlitz J., Emanuelsson H., Svedberg K., Waldenström A., Waldenström J., Hjalmarson A. Enzyme-estimated infarct size. Am J Cardiol 1984; 53: 15D–21D
  • Hokin M. R., Hokin L. E. Enzyme secretion and incorporation of P32 into phospholipids of pancreas slides. J Biol Chem 1953; 203: 967–977
  • Holubarsch C., Hasenfuss G., Blanchard E., Alpert N. R., Mulieri L. A., Just H. Myothermal economy of rat myocardium, chronic adaptation versus acute inotropism. Basic Res Cardiol 1986; 1: 95–102
  • Holubarsch C., Litten R. Z., Mulieri L. A., Alpert N. R. Energetic changes of myocardium as an adaptation to chronic hemodynamic overload and thyroid gland activity. Basic Res Cardiol 1985; 80: 582–93
  • Horak A. R., Opie L. H. Energy metabolism of the heart in catecholamine-induced myocardial injury. Concentration-dependent effects of epinephrine on enzyme release, mechanical function, and “oxygen wastage”. Adv Myocardiol 1983; 4: 23–43
  • Horowits R., Winegrad S. Cholinergic regulation of calcium sensitivity in cardiac muscle. J Mol Cell Cardiol 1983; 15: 277–80
  • Hultman J., Ronquist G. Myocardial high-energy phosphates and function under different postischemic conditions. A study in a paracorporeal rat heart model. Eur Surg Res 1984; 16: 201–13
  • Hultman J., Ronquist G., Hanson H. E., Åberg T., Bertrand G. M. Myocardial metabolism during mitral valve replacement. Thorac Cardiovasc Surgeon 1986; 34: 351–5
  • Ikeda U., Tsuruya Y., Yaginuma T. Alpha 1-adrenergic stimulation is coupled to cardiac myocyte hypertrophy. Am J Physiol 1991
  • Ikonomidis J. S., Salerno T. A., Wittnich C. Calcium and the heart: an essential partnership. Can J Cardiol 1990; 6: 305–16
  • Imai S., Ohta H. Positive inotropic effects induced by carbachol in rat atria treated with islet activating proteinassociation with phosphatidylinositol breakdown. Br J Pharmacol 1988; 94: 347–54
  • Irvine R. F., Brown K. D., Berridge M. J. Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochem J 1984; 222: 269–72
  • Irvine R. F., Letcher A. J., Heslop J. P., Berridge M. J. The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1,4,5)P3 3-kinase activity in animal tissues. Nature 1986; 320: 631–4
  • Källfelt B. J., Waldenstrom A. P., Hjalmarson A. C. Effects of adrenaline in vivo on protein synthesis and sensitivity to ischemia of the perfused rat heart. J Mol Cell Cardiol 1977; 9: 383–98
  • Kawaguchi H., Shoki M., Sano H., Kudo T., Sawa H., Mochizuki N., Okamoto H., Endo Y., Kitabatake A. Polyphosphoinositide metabolism in hypertrophic rat heart. J Mol Cell Cardiol 1992; 24: 1003–10
  • Kohl C., Linck B., Schmitz W., Scholz H., Scholz J., Toth M. Effects of carbachol and (-)-N6-phenylisopropyladenosine on myocardial inositol phosphate content and force of contraction. Br J Pharmacol 1990; 101: 829–34
  • Kohl C., Schmitz W., Scholz H. Positive inotropic effect of carbachol and inositol phosphate levels in mammalian atria after pretreatment with pertussis toxin. J Pharmacol Exp Ther 1990; 254: 894–9
  • Kohl C., Schmitz W., Scholz H., Scholz J. Evidence for the existence of inositol tetrakisphosphate in mammalian heart. Effect of α1-adrenoceptor stimulation. Circ Res 1990; 66: 580–3
  • Krebs H. A., Henseleit K. Untersuchungen über die Harnstoff-bildung im Tierkörper. Hoppe Seylers Z Physiol Chem 1932; 210: 33–66
  • Kuo J. F. Guanosine 3′:5′-monophosphate-dependent protein kinases in mammalian tissues. Proc Natl Acad Sci U S A 1974; 71: 4037–41
  • Kuo J. F. Divergent actions of protein kinase modulator in regulating mammalian cyclic GMP-dependent and cyclic AMP-dependent protein kinases. Metabolism 1975; 24: 321–9
  • Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Pfluegers Arch 1895; 61: 291–332
  • Laustiola K. Cyclic GMP affects redox state and improves energy charge of ischaemic Langendorff-perfused rat heart. Acta Pharmacol Toxicol Copenh 1985; 56: 139–43
  • Laustiola K., Vuorinen P., Vapaatalo H., Metsa K. T. Effects of cysteine and nitroglycerin on bovine heart guanylate cyclase and on tissue cyclic GMP and lactate of rat atria. Eur J Pharmacol 1983; 91: 301–4
  • Laustiola K., Vuorinen P., Vapaatalo H., Metsa K. T. Sodium nitroprusside inhibits lactate formation in rat atria: is cyclic GMP involved?. Acta Pharmacol Toxicol Copenh 1983; 52: 195–200
  • Lecarpentier Y., Waldenström A., Clergue M., Chemla D., Oliviero P., Martin J. L., Swynghedauw B. Major alterations in relaxation during cardiac hypertrophy induced by aortic stenosis in guinea pig. Circ Res 1987; 61: 107–16
  • Lindemann J. P., Watanabe A. M. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and Ca2+ transport in guinea pig ventricles. J Biol Chem 1985; 260: 13122–9
  • Löffelholz K., Pappano A. J. The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 1985; 37: 1–24
  • Lompré A. M., Schwartz K., D'Albis A., Lacombe G., Van T. N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature 1979; 282: 105–7
  • MacLeod K. M. Adrenergic-cholinergic interactions in left atria: interaction of carbachol with α- and β-adrenoceptor agonists. Can J Physiol Pharmacol 1986; 64: 597–601
  • Masters S. B., Martin M. W., Harden T. K., Brown J. H. Pertussis toxin does not inhibit muscarinic-receptor-mediated phosphoinositide hydrolysis or calcium mobilization. Biochem J 1985; 227: 933–7
  • Mercadier J. J., Lompré A. M., Wisnewsky C., Samuel J. L., Bercovici I., Swynghedauw B., Schwartz K. Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ Res 1981; 49: 525–32
  • Michell R. H. How do receptors at the cell surface send signals to the cell interior?. Br Med J Clin Res Ed 1987; 295: 1320–3
  • Molinoff P. B. Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs 1984; 2: 1–15
  • Morgan H. E. Signal transduction in myocardial hypertrophy. Keio J Med 1990; 39: 1–5
  • Morgan H. E., Henderson M. J., Regen D. M., Park C. R. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem 1961; 236: 253–61
  • Morgan H. E., Neely J. R., Wood R. E., Liebecq C., Liebermeister H., Park C. R. Factors affecting glucose transport in heart muscle and erythrocytes. Fed Proc 1965; 24: 1040–5
  • Movsesian M. A., Thomas A. P., Selak M., Williamson J. R. Inositol trisphosphate does not release Ca2+ from permeabilized cardiac myocytes and sarcoplasmic reticulum. Febs Lett 1985; 185: 328–32
  • Neely J. R., Liebermeister H., Morgan H. E. Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol 1967; 212: 815–22
  • Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984; 308: 693–8
  • Nosek T. M., Clein P. D., Godt R. E. Inositol trisphosphate has no direct effect on the contractile apparatus of skinned cardiac muscles. Pflugers Arch 1990; 417: 370–4
  • Nosek T. M., Clein P. D., Godt R. E. Inositol trisphosphate has no direct effect on the contractile apparatus of skinned cardiac muscles. Pflugers Arch 1990; 417: 370–4
  • Nosek T. M., Williams M. F., Zeigler S. T., Godt R. E. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol 1986
  • Offermanns S., Laugwitz K. L., Spicher K., Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A 1994; 91: 504–8
  • Opie L. H. The Heart. Physiology and Metabolism. Raven Press, New York 1991
  • Opie L. H. Role of cyclic nucleotides in heart metabolism. Cardiovasc Res 1982; 16: 483–507
  • Osnes J. B., Aass H., Skomedal T. Adrenoceptors in myocardial regulation: concomitant contribution from both α- and β-adrenoceptor stimulation to the inotropic response. Basic Res Cardiol 1989; 1: 9–17
  • Osnes J. B., Christiansen H. B., Horgmo G. I., Schiander I. G., Skomedal T. Alpha-adrenergic stimulation contributes to the inotropic effect of noradrenaline. Biomed Biochim Acta 1987; 46
  • Osnes J. B., Skomedal T., Óøye I. On the role of cyclic nucleotides in the heart muscle contraction and relaxation. Prog Pharmacol 1980; 4: 47–61
  • Otani H., Otani H., Das D. K. Evidence that phosphoinositide response is mediated by α1-adrenoceptor stimulation, but not linked with excitation-contraction coupling in cardiac muscle. Biochem Biophys Res Commun 1986; 136: 863–9
  • Otani H., Otani H., Das D. K. Alpha 1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res 1988; 62: 8–17
  • Pagano V. T., Inchiosa M. J. Cardiomegaly produced by chronic β-adrenergic stimulation in the rat: comparison with α-adrenergic effects. Life Sci. 1977; 21: 619–24
  • Pitcher J. A., Inglese J., Higgins J. B., Arriza J. L., Casey P. J., Kim C., Benovic J. L., Kwatra M. M., Caron M. G., Lefkowitz R. J. Role of β γ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257: 1264–7
  • Poggioli J., Sulpice J. C., Vassort G. Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. Febs Lett 1986; 206: 292–8
  • Reibel D. K., O'Rourke B., Foster K. A., Hutchinson H., Uboh C. E., Kent R. L. Altered phospholipid metabolism in pressure-overload hypertrophied hearts. Am J Physiol 1986
  • Renard D., Poggioli J. Does the inositol tris/tetrakisphosphate pathway exist in rat heart?. Febs Lett 1987; 217: 117–23
  • Rona G., Chappel C. I., Balazs T., Gaudry R. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Pathol 1959; 67: 443
  • Samuel J. L., Rappaport L., Mercadier J. J., Lompré A. M., Sartore S., Triban C., Schiaffino S., Schwartz K. Distribution of myosin isozymes within single cardiac cells. An immunohistochemical study. Circ Res 1983; 52: 200–9
  • Schmitz W., Eschenhagen T., Mende U., Muller F. U., Scholz H. The role of α1-adrenergic and muscarinic receptors in cardiac function. Eur Heart J 1991; 12: 83–7
  • Schmitz W., Kohl C., Neumann J., Scholz H., Scholz I. On the mechanism of positive inotropic effects of alpha-adrenoceptor agonists. Basic Res Cardiol 1989; 1: 23–33
  • Schmitz W., Scholz H., Scholz J., Steinfath M. Increase in IP3 precedes α-adrenoceptor-induced increase in force of contraction in cardiac muscle. Eur J Pharmacol 1987; 140: 109–11
  • Scholz J., Schaefer B., Schmitz W., Scholz H., Steinfath M., Lohse M., Schwabe U., Puurunen J. Alpha-1 adrenoceptor-mediated positive inotropic effect and inositol trisphosphate increase in mammalian heart. J Pharmacol Exp Ther 1988; 245: 327–35
  • Scholz J., Troll U., Sandig P., Schmitz W., Scholz H., Schulte A. E. J. Existence and cq-adrenergic stimulation of inositol polyphosphates in mammalian heart. Mol Pharmacol 1992; 42: 134–40
  • Schwartz K., Lecarpentier Y., Martin J. L., Lompré A. M., Mercadier J. J., Swynghedauw B. Myosin isoenzymic distribution correlates with speed of myocardial contraction. J Mol Cell Cardiol 1981; 13: 1071–5
  • Shoki M., Kawaguchi H., Okamoto H., Sano H., Sawa H., Kudo T., Hirao N., Sakata Y., Yasuda H. Phosphatidylinositol and inositolphosphatide metabolism in hypertrophied rat heart. Jpn Circ J 1992; 56: 142–7
  • Sim S. S., Kim J. W., Rhee S. G. Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 1990; 265: 10367–72
  • Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an α1 adrenergic response. J Clin Invest 1983; 72: 732–8
  • Skomedal T., Osnes J. B. Qualitative differences between the inotropic responses in rat papillary muscles to α-adrenoceptor and β-adrenoceptor stimulation by both noradrenaline and adrenaline. Acta Pharmacol Toxicol Copenh 1983; 52: 57–67
  • Skomedal T., Schiander I. G., Husoy E. A., Tveiten A., Osnes J. B. Lithium increases the α1-adrenoceptor mediated inotropic effect in rat heart. Pharmacol Toxicol 1991; 68: 88–92
  • Steinberg S. F., Kaplan L. M., Inouye T., Zhang J. F., Robinson R. B. Alpha-1 adrenergic stimulation of 1,4,5-inositol trisphosphate formation in ventricular myocytes. J Pharmacol Exp Ther 1989; 250: 1141–8
  • Strader C. D., Fong T. M., Tota M. R., Underwood D., Dixon R. A. F. Structure and function of G protein-coupled receptors. Annu. Rev. Biochem 1994; 63: 101–32
  • Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306: 67–9
  • Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 1984; 120: 481–5
  • Sutherland E. W., Rall T. W., Menon T. Adenyl cyclase. Distribution, preparation and properties. J Biol Chem 1962; 237: 1220–7
  • Sutherland E. W., Øye I., Butcher R. W. The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent pro hormon res 1965; 21: 623–46
  • Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 1986; 66: 710–71
  • Talosi L., Kranias E. G. Effect of alpha-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Circ Res 1992; 70: 670–8
  • Tang W. J., Gilman A. G. Type-specific regulation of adenylyl cyclase by G protein βγ-subunits. Science 1991; 254: 1500–3
  • Taussig R., Quarmby L. M., Gilman A. G. Regulation of purified type I and type II adenylylcyclases by G protein βγ-subunits. J Biol Chem 1993; 268: 9–12
  • Terzic A., Puceat M., Clement O., Scamps F., Vassort G. Alpha 1-adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J Physiol Lond 1992; 447: 275–92
  • Terzic A., Puceat M., Vassort G., Vogel S. M. Cardiac α1-adrenoceptors: an overview. Pharmacol Rev 1993; 45: 147–75
  • The Committee on Enzymes of The Scandinavian Society for Clinical Chemistry and Clinical Physiology. Recommended methods for the determination of four enzymes in blood. Scand J Clin Lab Invest 1974; 33: 291–306
  • Thelin S., Hultman J., Ronquist G., Hansson H. E. Myocardial high-energy phosphates, lactate and pyruvate during moderate or severe normothermic ischemia in rat hearts perfused with phosphoenolpyruvate and ATP in cardioplegic solution. Scand J Thorac Cardiovasc Surg 1987; 21: 245–9
  • Thorén P. Evidence for a depressor reflex elicited from left ventricular receptors during occlusion of one coronary artery in the cat. Acta Physiol Scand 1973; 88: 23–34
  • Vernon M. W., Heel R. C., Brogden R. N. Enoximone. A review of its pharmacological properties and therapeutic potential. Drugs 1991; 42: 997–1017
  • Vites A. M., Pappano A. Inositol 1,4,5-trisphosphate releases intracellular Ca2+ in permeabilized chick atria. Am J Physiol 1990; 258: H1745–52
  • Volpe P., Salviati G., Di V. F., Pozzan T. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature 1985; 316: 347–9
  • Waldenström A., Ronquist G., Carlsson L., Sabler E., Baldesten A., Siren M. Analysis of free inositol trisphosphate in heart tissue by FPLC and isotachophoresis. Biochim Biophys Acta 1990; 1051: 185–91
  • Waldenström A. P., Hjalmarson A. C. Myocardial enzyme release from ischemic isolated perfused working rat heart. Recent Adv Stud Cardiac Struct Metab 1975; 10: 307–15
  • Waldenström A. P., Hjalmarson A. C., Thornell L. A possible role of noradrenaline in the development of myocardial infarction: an experimental study in the isolated rat heart. Am Heart J 1978; 95: 43–51
  • Walsh M. P., Le P. C., Vallet B., Cavadore J. C., Demaille J. G. Cardiac calmodulin and its role in the regulation of metabolism and contraction. J Mol Cell Cardiol 1980; 12: 1091–101
  • Williams L. T. Identification of cardiac α-adrenergic receptors by direct binding studies: Clinical implications. Catecholamines and the heart, W. Delius, E. Gerlach, H. Grobecker, W. Kübler. Springer-Verlag, Berlin Heidelberg New York 1981; 53–60
  • Wong S. K., Garbers D. L. Receptor guanylyl cyclases. J Clin Invest 1992; 90: 299–305
  • Woodcock E. A., Funder J. W., Johnston C. I. Decreased cardiac β-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 1979; 45: 560–5
  • Woodcock E. A., Smith A. I., Wallace C. A., White L. B. Evidence for a lack of inositol—(1,4,5)trisphosphate kinase activity in norepinephrine-perfused rat hearts. Biochem Biophys Res Commun 1987; 148: 68–77
  • Woodcock E. A., Tanner J. K., Fullerton M., Kuraja I. J. Different pathways of inositol phosphate metabolism in intact neonatal rat hearts and isolated cardiomyocytes. Biochem J 1992; 281: 683–688
  • Woodcock E. A., White L. B., Smith A. I., McLeod J. K. Stimulation of phosphatidylinositol metabolism in the isolated, perfused rat heart. Circ Res 1987; 61: 625–31
  • Yang X. P., Samaja M., English E., Benatti P., Tarantola M., Cardace G., Motterlini R., Micheletti R., Bianchi G. Hemodynamic and metabolic activities of propionyl-L-carnitine in rats with pressure-overload cardiac hypertrophy. J Cardiovasc Pharmacol 1992; 20: 88–98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.