274
Views
147
CrossRef citations to date
0
Altmetric
Review Article

Imaging with electricity: Report of the European Concerted Action on Impedance Tomography

, &
Pages 201-232 | Published online: 09 Jul 2009

References

  • American Academy of Pediatrics. Task force on prolonged apnea. Pediatrics 1978; 61: 651–652
  • Avill R., Mangnall Y.E., Bird N.C., Brown B.H., Seagar A.D., Johnson A.G., Read N.W. Applied potential tomography: a new non-invasive technique for measuring gastric emptymg. Gastroenterology 1987; 92: 1019–1026
  • Avis N.J., Barber D.C., Brown B.H., Kiber M.A. Back-projection distortions in applied potential tomography images due to non-uniform reference conductivity distributions. Clinical Physics and Physiological Measurement 1992; 13: 113–117, suppl.A
  • Barber D.C. An overview of image reconstruction. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993, An introductory review of reconstruction: primarily concerned with linear techniques
  • Barber D.C., Brown B.H. Applied potential tomography. Journal of Phys E: Scientific Instruments 1984; 17: 723–733, A general description of the principles of an EIT instrument, written in the early stages of development
  • Barber D.C., Seagar A.D. Fast reconstruction of resistance images. Clinical Physics and Physiological Measurement 1987; 8: 47–54, (suppl.2A) Description of a linear back-projection scheme for EIT the majority of clinical EIT images are still produced using this scheme or its descendants
  • Bayford R. Middlesex University, UK 1994, Ph.D. thesis, Describes a back-projection technique in which a filter function is derived from a constrained optimisation technique
  • Baxter A.J., Mangnall Y.E., Loj E.J., Brown B.H., Barber D.C., Johnson A.G., Read N.W. Evaluation of applied potential tomography as a new non-invasive gastric secretion test. Gut 1988; 30: 1730–1735
  • Bayford R, Hanquan Y., Boone K.G., Holder D.S. Experimental validation of a novel reconstruction algorithm based on backprojection of Lagrange multipliers. Clinical Physics and Physiological Measurement 1995; 16: 237–248, suppl.3A
  • Blad B. An electrical impedance tomography system for complex impedance imaging. Innovation and Technology in Biology and Medicine 1994; 15: 80–88, suppl.1
  • Boom K.G., Holder D.S. Assessment of noise and drift artefacts in electrical impedance tomography measurements using the Sheffield Mark I system. Innovation and Technology in Biology and Medicine 1995a; 16: 67–70, suppl.2
  • Boone K.G., Holder D.S. A model of the effect of variations in contact and skin impedance on APT measurement artefacts. Innovation and Technology in Biology and Medicine 1995b; 16: 49–60, suppl.2
  • Bragós R, Rosell J., Riu P. A wideband AG coupled current source for electrical impedance tomography. Clinical Physics and Physiobgical Measurement 1994; 15: 91–99, suppl.2A
  • Brown B.H., Barber D.C., Leathad A.D., Lu I., Wang W., Smallwood R.H., Wilson A.J. High frequency EIT data collection and parametric imaging. Innovation and Technology in Biology and Medicine 1994; 15: 1–8, suppl.l
  • Brown B.H., Barber D.C., Wang W., Lu I.L, Fathard A.D., Smallwood R.H., Hampshire A.R, Mackay R., Hatzigalanis K. Multi-frequency imaging and modelling of respiratory related impedance changes. Physiological Measurement 1994; 15: 1–11, suppl.2A
  • Brown B.H., Leathard A.D., Lu L., Wang W., Hampshire A.R. Measured and expected Cole parameters from electrical impedance tomographic spectroscopy images of the human thorax. Physiological Measurement 1995; 16: 57–67, suppl.3A
  • Brown B.H., Lindley F., Knowles R., Wilson A.J. (1990) A body-worn APT system for space use. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. University of Sheffield, Sheffield
  • Brown D.C., Seagar A.D. The Sheffield data collection system. Clinical Physics and Physiological Measurement 1987; 8: 91–98, (suppl.A), A description of one of the first clinical EIT systems
  • Brown D.C., Seagar A.D. Limitations in hardware design. Clinical Physics and Physiological Measurement 1987; 8: 91–98, (suppl.A), A discussion of the improvements which might be expected to be achieved in EIT hardware, and the implications these might have for image quality
  • Campbell J.H., Harris N.D., Zhang F., Morice A.H., Brown B.H. The monitoring of changes in intrathoracic fluid volumes with the Sheffield EIT system. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Cheney M., Isaacson D., Newell J.C., Simake S., Goble J. NOSER An algorithm for solving the inverse conductivity problem. International Journal of Imaging System Technology 1990; 2: 66–75, Describes an algorithm which makes an image from the first step of a Newton-Raphson process
  • Cole K.S. Permeability and impermeability of cell membranes for ions. Cold Spring Hadour Symposium on Quantitative Biology 1940; 8: 110–122
  • Cole KS., Cole R.H. Dispersion and absorption in dielectrics. Journal of Chemical Physics 1941; 9: 341–351
  • Conway J., Hawley M., Mangnall Y.F., Amasha H., Van Roon G.C. Experimental assessment of electrical impedance imaging for hyperthermia monitoring. Clinical Physics and Physiological Measurement 1992; 13: 185–190, suppl.A
  • Cook R.D., Saulnier G.J., Gisser D.G., Goble J., Newell J.C., Isaacson D. ACTS: A high-speed, high-precision electrical impedance tornograph. IEEE, Transactions on Biomedical Engineering 1994; 41: 713–722
  • Cusick G., Holder D.S., Birkett A., Boone KG. A system for impedance imaging of epilepsy in ambulatory human subjects. Innovation and Technology in Biology and Medicine 1994; 15: 34–39, suppl.l
  • Denyer C.W., Lidgey F.J., McLeod C.N., Zhu O.S. Current source calibration simplifies high-accuracy current source measurements. Innovation and Technology in Biology and Medicine 1994; 15: 48–55, suppl.l
  • Devane S.P. Application of EIT to gastric emptylng in infants: validation against residual volume method. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Erol R.A., Smallwood R.H., Brown B.H., Chew P., Bardham K.D. Detecting oesophageal-related changes using electrical impedance tomography. Physiological Measurement 1995; 16: 143–152, suppl.3A
  • Erol R.A., Chew P., Smallwood R.H., Brown B.H., Bardham KD. (1995) Can EIT be used to detect gastrooesophageal reflux. Proceedings of the 9th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg, 462–463
  • Evans D.F., Wright J.W. (1990) Is acid suppression necessary when measuring gastric emptylng using applied potential tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography. 1990, T.J. Hames. Sheffield University, Sheffield, 249–255
  • E-Boglu B.M., Brown B.H., Barber D.C. Imaging cardio-pulmonary blood flow using electrical impedance tomography. Blood Flow Measurements in Clinical Diagnosis, R. Price, J.A. Evans. Biological Engineering Society, London 1988
  • Eyúboglu B.M., Brown B.H., Barber D.C., Seagar A.D. Localisation of cardiac related impedance changes in the thorax. Clinical Physics and Physiological Measurement 1987; 8: 167–173, suppl A
  • Freeston I.L., Tozer R.C. Impedance imaging using induced currents. Physiological Measurement 1995; 16: 257–266, suppl. 3A
  • Fricke H., Morse S. The electric resistance of blood between 800 and 4.5 million cycles. Journal of General Physiology 1925; 9: 153–167
  • Gadd R., Record P., Rolfe P. A sensitivity region reconstruction algorithm using adjacent drive current injection strategy. Clinical Physics and Physiological Measurement 1992; 13: 101–105, (suppl. A), Describes a reconstruction technique based on a very approximate inversion of a sensitivity matrix
  • Gadd R., Record P.M., Vinther F., Rolfe P. The Keele approach to EIT in the neonatal head. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Geddes L. Electrodes and the Measurement of Bioelectric Events. John Wiley & Sons, New York 1972
  • Gencer N.G., Ider Y.Z. A comparative study of several exciting magnetic fields for induced current EIT. Physiological Measurement 1994; 15: 51–57, suppl 2A
  • Gersing E., Krüger W., Osypka M., Vaupel P. Problems involved in temperature measurement using EIT. Physiology Measurement 1995; 16: 153–160, suppl. 3A
  • Gisser D.G., Isaacson D., Newell J.C. Current topics in impedance imaging. Clinical Physics and Physiological Measurement 1987; 8: 13–31, suppl. A
  • Gisser D.G., Isaacson D., Newell J.C. Theory and performance ofanadaptive current tomography system. Clinical Physics and Physiological Measurement 1988; 9: 35–41, suppl. A
  • Gisser D.G., Newell J.C., Salunier G., Hochgraf C., Cook R.D., Goble J.C. Analog electronics for a highspeed high-precision electrical impedance tomograph. Proceedings of the IEEE, EMBS 1991; 13: 23–24
  • Grant F.C. Localisation of brain tumours by determination of the electrical resistance of the growth. Journal of American Medical Ass 1923; 81: 2166–2169
  • Griffiths H. A Cole phantom for EIT. Physiological Measurement 1995; 16: 29–38, suppl. 3A
  • Grifftths H., Jossinet J. Bioelectrical spectroscopy from multi-frequency EIT. Physiological Measurement 1994; 15: 59–63, suppl. 2A
  • Hahn G., Sipinkova J., Baisch F., Hellige G. Changes in the thoracic impedance distribution under different ventilatory conditions. Physiological Measurement 1995; 16: 161–173, suppl. 3A
  • Hampshire A.R., Smallwood R.H., Brown B.H., Primhak R.A. Multifrequency and parametric EIT images of neonatal lungs. Physiological Measurement 1995; 16: 175–189, suppl. 3A
  • Harris N.D., Suggett A.J., Barber D.C., Brown B.H. Applications of applied potential tomography (APT) in respiratory medicine. Clinical Physics and Physiological Measurement 1987; 8: 155–165, suppl. A
  • Harris N.D., Suggett A.J., Barber D.C., Brown B.H. Applied potential tomography: a new technique for monitoring pulmonary function. Clinical Physics and Physiological Measurements 1987; 9: 79–85, suppl. A
  • Hober R. Eine methode, die elektrische leitfahigkeit im Innern von Zellen zu messen. Arch. Ges. Physiol. 1910; 133: 237–259
  • Holder D.S. Electrical impedance tomography of global cerebral ischaemia with cortical or scalp electrodes in the anaesthetised rat. Clinical Physics and Physiological Measurement 1992; 13: 87–98
  • Holder D.S., Anells N., Boone K.G. (1994) In-vivo images of the female breast obtained with the Sheffield Mark 1 electrical impedance tomography system. Proceedings of the 3rd Meeting of the European Concerted Action on Impedance Tomography, AnkaraTurkey, September, 1994
  • Holder D.S., Hanquan Y., Rao A. (1995) Novel biological phantom materials for multifrequency EIT. Proceedings of the 9th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg
  • Holder D.S., Khan A. The use of polyacrilamide gels to determine the linearity of the Sheffield Mark 1 EIT system. Clinical Physics and Physiological Measurement 1994; 15: 45–50, suppl. 2A
  • Holder D.S., Temple A.J. Effectiveness of the Sheffield EIT system in distinguishing patients with pulmonary pathology from a series of normal subjects. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Horowitz P., Hill P. The Art of Electronics. Cambridge University Press, New York 1990
  • Hossman K. Cortical steady potential, impedance and excitability changes during and after total ischaemia of cat brain. Experimental Neurology 1971; 32: 163–175
  • Hua P., Webster J.G., Tompkins W.J. Aregularised electrical impedance tomography reconstruction algorithm. Clinical Physics and Physiological Measurement 1988; 9: 137–141, suppl. A
  • Hua P., Woo E.J. Reconstruction algorithms. Electrical Impedance Tomography, J.G. Webster. Adam Hilger, Bristol 1991
  • Huang S.M., Xie C.G., Thorn R., Snowden D., Beck M.S. Design of sensors electronics for electrical capacitance tomography. IEE Proceedings G 1992; 139: 83–88
  • Hughes T.A.T., Liu P., Griffiths H., Lawrie B.W., Wiles C.M. An analysis of studies comparing electrical impedance tomography with X-ray videofluoroscopy in the assessment of swallowing. Physiological Measurement 1994; 15: 199–209, suppl. 2A
  • Isakov V. Of uniqueness of recovery of a discontinuous conductivity coefficient. Applied Mathematics 1988; 41: 865–877
  • Jossinet J., Risacher F. The variability of resistivity in human breast tissue. Medical and Biological Engzneering and computing 1996; 34: 346–350
  • Jossinet J., Trillaud C. (1990) A high contrast dual frequency multi-electrode system for electrical impedance tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography. 1990, T.J. Hames. Sheffield University, Sheffield
  • Kato H., Hiraoka M., Ishida T. An agar phantom for hyperthermia. Physics in Medicine and Biology 1986; 13: 396–398
  • Kato H., Ishida T. Development of an agar phantom adaptable for simulation of various tissues in the range 5–40 MHz. Physics in Medicine and Biology 1987; 32: 221–226
  • Killingback A.L.T., Zadehkoochak M., Blott B.H., Hames T.K. Pulmonary ventilation, pulmonary perfusion and ventricular ejection profile studies with EIT. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Kleinermann F., Avis N.J., Judah S., Barber D.C. (1995) Three-dimensional image reconstruction for electrical impedance tomography. Proceedings of the 9th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg, 512–513
  • Kohn R.V., Vogelius M. Identification of an unknown conductivity by means of measurements at the boundary. Proceedings of the SIAM-AMS 1984a; 14: 113–123, One of the theorectical studies aimed at determining whether there is a unique impedance distribution corresponding to a general boundary voltage profile. Considers only the case of continuous boundary voltages
  • Kohn R.V., Vogelius M. Determining conductivity by boundary measurements. Comments on Pure and Applied Mathematics 1984b; 37: 289–298
  • Kotre C.J. EIT image reconstruction using sensitivity coefficient weighted backprojection. Physiological Measurement 1992; 15: 125–136, (suppl. 2A), Describes a reconstruction technique based on the Geselowitz sensitivity theory, and various filters which can be used to improve the image quality
  • Kotre C.J. (1995) Subsurface electrical impedance imaging: measurement strategy, image reconstruction and in-vivo results. Proceedings of the 9th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg, 522–523
  • Kyriacou G.A., Koukourlis C.S., Sahalos J.N. A reconstruction algorithm of electrical impedance tomography with optimal configuration of the driven electrodes. LEEE, Transaction on Medical Imaging 1993; 12: 430–438
  • Lapicque P. Rescherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarisation. Journal of de Physiologic et Pathologie Generale 1907; 9: 620–635
  • Leathard A.D., Caldicott L., Brown B.H., Sinton A.M., McArdle F.J., Smith R.W.M., Barber D.C. Cardiovascular imaging of injected saline. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Li J., Joppek C., Faust U. (1995) Fast data acquisition system with active electrodes for in vivo multifrequency electrical impedance tomography. Proceedings of the 13th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg, 448–449
  • Lidgey F.J., Zhu Q.S., McLeod C.N., Breckon W. Electrode current determination from programmable current sources. Clinical Physics and Physiological Measurement 1992; 13: 43–46, suppl. A
  • Lonheart W. (1995) Uniqueness of solution for the anisotropic electrical impedance inverse problem. Proceedings of the 9th Meeting of the ICEBI, Heidelberg, September, 1995. Heidelberg University Press, Heidelberg, 515
  • Lu I., Brown B.H. The electrode and electronic interface in an EIT spectroscopy system. Innovation and Technology in Biology and Medicine 1994; 15: 97–103, suppl. 1
  • Mangnall Y.F., Baxter A.J., Avill R., Bird N.C., Brown B.H., Barber D.C., Seagar A.D., Johnson A.G., Read N.W. Applied potential tomography: a new non-invasive technique for assessing gastric function. Clinical Physics and Physiological Measurement 1987; 8: 119–130, suppl. A
  • Mangnall Y.F., Baxter A.J., Avill R., Bird N.C., Brown B.H., Barber D.C., Seagar A.D., Johnson A.G., Read N.W. Applied potential tomography: a new technique for assessing gastric function. Clinical Physics and Physiological Measurement 1987; 8: 131–140, (suppl.A), Demonstrates that EIT imaging and gamma emission techniques produce comparable results in assessment of gastric emptying
  • McAdams E.T., McLaughlin J.A., McAnderson J. Multi-electrode systems for electrical impedance tomography. Physiological Measurement 1994; 15: 101–107, suppl. 2A
  • McArdle F.J., Turley A., Hussain A., Hawley K., Brown B.H. An in-vivo examination of cardiac impedance changes imaged by cardiosynchronous averaging. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Metherall P., Barber D.C., Smallwood R.H., Brown B.H. Three-dimensional electrical impedance tomography. Nature 1996; 380(6574)509–512
  • Möller P.H., Tranberc K.G., Blad B., Henriksson P.H., Lindberg L., Weber L., Person B.R.R. EIT for measurement of temperature distribution in laser thermotherapy. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Morucci J.P., Marsili P.M., Granie M., Dai W.W., Shi Y. Direct sensitivity matrix approach for fast reconstruction in electrical impedance tomography. Physiological Measurement 1994; 15: 107–114, suppl. 2A
  • Murphy D., Roe P. Aspects of instrumentation design for impedance imaging. Clinical Physics and Physiological Measurement 1988; 9: 5–14, (suppl. A), Describes how various non-idealities, for example, stray capacitance, contribute to measurement errors in EIT
  • Newell J.C., Isaacson D., Cheney M., Salnier G.J., Gisser D.G., Goble J., Cook R.D., Edic P.M. An electric current tornograph. Proceedings of the m, EMBS 1992; 14: 1752–1753
  • Newell J.C., Isaacson D., Cheney M., Saulnier G.J., Gisser D.G., Goble J., Cook R.D., Edic P.M., Newton A.M. In vivo impedance images using sinusoidal current patterns. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993
  • Newell J.C., Edic P.M, Ren X., Larson-Wiseman J.L, Danylecke M.D. IEEE Trans-BME 1996; 43: 133–139
  • Nour S. Measurement of gastric emptying in infants using APT. University of Sheffield, SheffieldUK 1992, Ph.D. Dissertation
  • Nowicki D.J. Current generators. Electrical Impedance Tomography, J.G. Webster. Adam Hilger, Bristol 1990
  • Nowicki D.I., Webster J.G. A one op-amp current source for electrical impedance tomography. Proceedings of the IEEE, EMBS 1989; 11: 457–458
  • Osypka K., Gersing E. Parallel signal processing and multi-electrode current feeding in a multi-frequency EIT system. Innovative Techniques in Biology and Medicine 1994; 15: 57–61, suppl. l
  • Osypka M., Gersing E. Tissue impedance spectra and the appropriate frequencies for EIT. Physiological Measurement 1995; 16: 49–55, suppl. 3A
  • Paulson K., Lionheart W., Pidcock M. Optimal experiments in electrical impedance tomography. EEE Transactions on Medical Imaging 1993; 12: 681–686
  • Philippson M. Les lois de la resitance electrique des tissus vivants. Bull Acad R Belgique Clinic Sci 1921; 7: 387–403
  • Pidcock M.K., Kuzoglu M., Leblebicioglu K. Analytic and semi-analytical solutions in electrical impedance tomography I: two-dimensional problems. Physiological Measurement 1995a; 16: 77–90
  • Pidcock M.K., Kuzoglu M., Leblebicioglu K. Analytic and semi-analytic solutions in electrical impedance tomography I: three-dimensional problems. Physiological Measurement 1995b; 16: 91–110
  • Press W.H., Teukolsky S.A., Vettering W.T., Flannery B.P. Numerical Recipes. Cambridge University Press, New York 1992
  • Record P.M. Single-plane multifrequency electrical impedance instrumentation. Clinical Physics and Physiological Measurement 1994; 15: 29–36, suppl. 2A
  • Record P.M., Gadd R., Rolfe P. (1990) A signalconditioning electrode for electrical impedance tomopphy. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J Hames. Sheffield University, Sheffield
  • Record P.M., Hargreaves R.W. Frequency-independent common-mode voltage compensation for EIT applications. Innovation and Technology in Biology and Medicine 1994; 15: 9–15, suppl.l
  • Record P.M., Wang M., Dicken F.J. Conducting boundary strategy: a new technique for medical EIT. Physiological Measurement 1995; 16: 249–256, suppl.3A
  • Rigaud B., Anah I., Givelin P.G., Woitin P., Morucci J.P. (1990) A multi-function electrode module for electrical impedance tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography. 1990, T.J. Hames. University of Sheffield, Sheffield
  • Rigaud B., Hamzauoi L., Frikha R., Chauveau N., Morucci J.-P. In vitro tissue characterisation and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiological Measurement 1995; 16: 15–29, suppl. 3A
  • Rigaud B., Shi Y., Anah J., Martinez E., Morucci J.P. (1990) Acquisition problems of the electrical bioimpedance signal. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University Press, Sheffield
  • Riu P., Lozano A., Rosell J. (1990) Errors in tomography systems caused by reactive electrode impedance. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University, Sheffield
  • Riu P., Rosell J., Pallas-Areny R. Multifrequency electrical impedance imaging as an alternative to absolute imaging. Proceedings of the 1st European concerted action on process tomography. 1992a
  • Riu P., Rosell J., Lozano A., Pallas-Arény R. A broadband system for multifrequency static imaging in electrical impedance tomography. Clinical Physics and Physiological Measurement 1992b; 13: 61–66, suppl. A
  • Rosell J., Colominas J., Riu P., Pallas-Areny R., Webster J.G. Skin impedance from 1 Hz to 1 MHz. IEEE, Transactions on Biomedical Engineering 1988a; 35: 649–651
  • Rosell J., Murphy P., Pallas R., Rolfe P. Analysis and assessment of errors in a parallel data acquisition system for electrical impedance tomography. Clinical Physics and Physiological Measurement 1988b; 9: 93–99, (suppl. A), Describes some sources of common-mode voltage in an EIT instrument, and the effect they have on measurement error
  • Sahalos J.N., Kyriacou G.A., Vafiadis E. An efficient finiteelement algorithm for 3D layered complex structure modelling. Physiological Measurement 1994; 15: 65–68, sup pl. 2a
  • Seagar A.D., Barber D.C., Brown B.H. Theoretical limits to sensitivity and resolution in impedance imaging. Clinical Physics and Physiological Measurement 1987; 8: 13–31, (suppl. A), Demonstrates the fundamental compromise between sensitivity and resolution in EIT, based on a theoretical relationship between resistivity and voltage in a uniform cylinder
  • Shi Y., Rigaud B., Marsili P.M., Morucci J.P. (1990) An electrical impedance tomograph: hardware, software and static images. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University Press, Sheffield
  • Smallwood R.H., Nour S., Mangnall Y.F., Smythe A. Impedance imaging and gastric motility. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993; 145–153
  • Smallwood R.H., Mangnall Y.F., Leathard A.D. Transport of gastric contents. Physiological Measurement 1994; 15: 175–188, suppl. 2A
  • Smith R.W.M., Brown B.H., Freeston I.L., McArdle F.J. (1990) Real-time impedance tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography. 1990, T.J. Hames. Sheffield University Press, Sheffield
  • Thomas D.C., McArdle F.J., Rogers V.E., Beard R.W., Brown B.H. Local blood volume changes in women with pelvic congestion measured by applied potential tomography. Clinical Science 1991; 81: 401–404
  • Van Harreveld A., Schade J.P. Changes in the electrical conductivity of cerebral cortex during seizure activity. Experimental Neurology 1962; 5: 383–400
  • Wang M., Dicken F.J., Beck M.S. Improved electrical impedance tomography system and data collection protocols. Proceedings of the First European Concerted Action on Process Tomography. 1992, 40–53
  • Wexler A. Electrical impedance imaging in two and three dimensions. Clinical Physics and Physiological Measurement 1988; A: 729–733
  • Woo E.J. University of Wisconsin-Madison, USA 1990, Ph.D. thesis, Describes the use of the Newton - Raphson method and its variants in EIT reconstruction. The forward problem is represented as a finite-element model
  • Wright J.W., Evans D.F., Bush D., Ledingham S. The effect of nutrient and non-nutrient test meals on gastric emptylng as measured by EIT. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993; 100–106
  • Xie C.G., Huang S.M., Horn B.S., Thorn R., Lenn C., Snowden D., Beck M.S. Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors. IEE, Proceedings 1992; 139: 89–98
  • Yamamoto T., Yamamoto Y. Electrical properties of the epidermal stratum corneum. Medical and Biological Engineering 1967a; 14: 151–158
  • Yamamoto T., Yamamoto Y. Dielectric constant and resistivity of epidermal stratum comeum. Medical and Biological Engineering 1967b; 14: 494–499
  • Yorkey T.J., Webster J.G., Tomkins W.J. An optimal impedance tomographic reconstruction algorithm. Proceedings of the IEEE, EMBS 1986; 8: 339–342
  • Zadehkoochak M., Blott B.H., Hames T.K., George R.E. Special expansion in electrical impedance tomography. Journal of Physics D: Applied Physics 1991; 24: 1911–1916, Demonstrates the use of singular-value decomposition techniques in EIT image reconstruction. As well as reconstruction, these techniques provide insight into the distribution of sensitivity and spatial resolution in the image
  • Zadehkoochak M., Blott B.H., Hames T.K., George R.F. Pulmonary perfusion and ventricular ejection imaging by frequency domain filtering of EIT images. Clinical Physics and Physiological Measurement 1992; 13: 191–196, suppl. A
  • Zhu Q.S., McLeod C.N., Denyer C.W., Lidgey F.L., Lionheart W.R.B. Development of a real-time adaptive current tomograph. Clinical Physics and Physiological Measurement 1994; 15: 37–43, suppl. 2A
  • Alvarado F.L. Computational complexity of operations involving perfect elimination sparse matrices. International Journal of Computer Mathematics 1977; 6: 69–82
  • Am N.J., Barber D.C. Image reconstruction using non-adjacent drive configurations. Physiological Measurements 1993; 15: 153–160, (suppl. 2A) Compares the effects on image quality of varying the spacing between excitation electrodes. As expected, increasing electrode spacing leads to a reduction in the rank of the sensitivity matrix, and, it is expected, to a loss of spatial resolution
  • Avis N.J., Barber D.C., Brown B.H., Kiber M.A. Distortions in applied potential tomographic images due to non-uniform reference distributions. Proceedings of the IEEE, EMS 1991; 13: 20–21
  • Baker L.E., Geddes L.A. Quantitative evaluation of impedance spirometry in man. American Journal of Medical Electronics 1965; 4: 73–77
  • Baker L.E., Geddes L.A. Transthoracic current paths in impedance spirometry. Proceedings of the Symposium on Biomedical Engineering 1966; 1: 181–186
  • Barber D.C., Brown B.H. Recent developments in applied potential tomography. Information Processing in Medical Imaging, S. Bacharach. Martinus Nijhoff, Dordrecht 1986
  • Barber D.C., Brown B.H., Freeston I.L. Imaging spatial distributions of resistivity using applied potential tomography. Electronic Letters 1983; 19: 933–935
  • Bard Y. Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM Journal of Numerical Analysis 1970; 7: 157–186
  • Blad B., Bernstam I., Person B., Lindstrom K. Improvements in the hardware of the Lund impedance tomography system. Clinical Physics and Physiological Measurement 1992; 13: 15–17, suppl. A
  • Blad B., Lindstrom K., Bertenstam L., Person B.R.R. A current-injecting device for electrical impedance tomography. Clinical Physics and Physiological Measurement 1994; 15: 169–177, suppl. 2A
  • Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8 February, 1986; 307–310
  • Boone K.G., Holder D.S. Design considerations and performance of a prototype system for imaging neuronal depolarisation in the brain using ‘direct current’ electrical resistance tomography. Physiological Measurement 1994; 16: 87–98, suppl. 3A
  • Boone K.G., Holder D.S. Current approaches to analogue instrumentation design in electrical impedance tomography: a review. Physiological Measurements 1996; 17: 229–247
  • Boone K.G., Holder D.S. The effect of skin impedance on image quality in electrical impedance tomography. Medical and Biological Engineering Comp. 1996; 34: 351–354
  • Boone K.G., Lewis A.M., Holder D.S. Imaging of cortical spreading depression using EIT: implication for localisation of epileptic foci. Physiological Measurements 1994; 15: 189–190, (suppl. 2A), Demonstrates, for the first time, the use of EIT for localising focal pathology in the brain. The experiments were carried out on the exposed brains of animals
  • Bozler E., Cole K.S. Electrical impedance and phase angle of muscle in rigor. Journal of General Physiology 1935; 6: 229–241
  • Breckon W.R., Pidcock M.K. Mathematical aspects of impedance imaging. Clinical Physics and Physiological Measurement 1987; 8: 77–84, suppl. A
  • Brown B.H. Tissue impedance methods. Imaging with Non-Ionizing Radiations, D.F. Jackson. Surrey University Press, Guildford 1983
  • Brown B.H. (1990) Overview of clinical applications. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. University of Sheffield, Sheffield
  • Brown B.H. A review of systems available for medical use. Clinical and Physiological Applications of EIT, D.S. Holder. UCL Press, London 1993
  • Brown B.H., Barber D.C. Electrical impedance tomography: the construction and application to physiological measurement of electrical impedance changes. Medical Progress and Technology 1987; 13: 69–75
  • Brown B.H., Barber D.C, Eyuboglu B.M., Harris N.D., McArdle F. Electrical impedance imaging developed to image cardiopulmonary function. Proceedings of the IEEE EMBS 1987; 9: 1200–1202
  • Brown B.H., Barber D.C., Seagar A.D. Applied potential tomography: possible clinical applications. Clinical Physics and Physiological Measurements 1985; 6: 109–121
  • Brown B.H., Seagar A.D. Applied potential tomography: data collection problems. Proceedings of the IEE International Conference on Electric and Magnetic Fields in Medicine and Biology 1985; 1: 79–82
  • Burger H.C., Dongen R. Specific electrical resistance of body tissues. Physics in Medicine and Biology 1961; 5: 431–447
  • Burnett D.S. Finite Element Analysis: From Concepts to Applications. Addison-Wesley, Reading, MA 1987
  • Campbell J.H., Harris N.D., Zhang F., Brown B.H., Morice A.H. Clinical applications of electrical impedance tomography in the monitoring of changes in intrathoracic fluid volumes. Physiological Measurement 1994; 15: 217–222, suppl. 2A
  • Chen Z.Q., Paoloni P.I. An error study of some linear reconstruction algorithms for electrical impedance tomography. Clinical Physics and Physiological Measurement 1992; 13: 389–410
  • Cheney M., Isaacson D. An overview of inversion algorithms for impedance imaging. ant. Mathematics 1991; 122: 29–39
  • Cheng K., Isaacson D., Newell J.C., Gisser D.G. Electrode models for electric current computed tomography. LEEE. Transactions on Biomedical Engineering 1989; 36: 918–924, A theorectical study of the effect of electrode impedance on the voltage and current at the boundary of an object
  • Cole K.S. Membranes, Ions and Impulses. University of California Press, Los Angeles 1968, A summary of the work in the field of cell biophysics, from 1930–1960
  • Cole K.S., Baker R.F. Longitudinal impedance of the squid giant axon. Journal of General Physiology 1941; 24: 771–788, Possibly the first time an inductance was shown in the cell membrane
  • Cole K.S., Curtis H.J. Electric impedance of nerve and muscle. Quantum Biology 1936; 4: 78–89
  • Conte S.D., De Boor C. Elementaly Numerical Analysis. McGraw-Hill, New York 1980
  • Conway J. Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements. Clinical Physics and Physiological Measurement 1987; 8: 141–614, suppl.A
  • Cook R.D., Saulnier G.J., Goble J.C. A phase sensitive voltmeter for a high-speed high-precision electrical impedance tomography. Proceedings of the IEEE, EMBS 1991; 13: 22–23
  • Dai W.W., Marsili P.M., Martinez F., Morucci J.-P. Using the Hilbert uniqueness method in a reconstruction algorithm for electrical impedance tomography. Physiological Measurement 1994; 15: 161–168, suppl. 2A
  • Das D.P., Webster J.C. Defibrillation recovery curves for different electrode materials. IEEE, Transactions on Biomedical Engineering 1980; BME-27: 230–233
  • Dawids S.G. Evaluation of applied potential tomography: a clinician's view. Clinical Physics and Physiological Measurement 1987; 8: 175–180, suppl. A
  • Denniston J.C., Baker I.E. Measurement of urinary bladder emptying using electrical impedance. Medical and Biological Engineering 1975; 13: 305–306
  • Denyer C.W., Lidgey F.J., Zhu Q.S., McLeod C.N. High output impedance current source for electrical impedance tomography. Physiological Measurement 1993; 15: 79–82, (suppl. 2A), A current source which uses the principle of sensing the currents in the supply rails of an op-amp
  • Dines KA., Lytle R.I. Analysis of electrical conductivity imaging. Geophysics 1981; 46: 1025–1036, Describes a scheme for generating and reconstructing EIT data, based on a resistor-grid model
  • Doyle P.T., Hill D.W. The measurement of residual urine volume by electrical impedance in man. Medical and Biological Engineering 1975; 13: 3074
  • Elster D.E. Cranial Magnetic Resonance Imaging. Churchill Livingstone, New York 1988; 31–42
  • Eyüboglu B.M., Brown B.H., Barber D.C. Limitations to SV determination from APT images. Proceedings of the LEEE, EMBS 1989; 11: 442–443
  • Eyüboglu B.M. University of Sheffield, SheffieldUK 1988, Ph.D. thesis
  • Fleming D.G. Role of home monitoring for infants at risk of SIDS. Proceedings of the AAMI 1983; 18: 45
  • Fricke H., Morse S. The electric capacity of tumors of the breast. Journal of Cancer Research 1926; 10: 340–376
  • Fuks L.F., Cheney M., Isaacson D., Gisser D.G., Newell J.C. Detection and imaging of electric conductivity and permittivity and low frequency. IEEE, Transactions on Medical Imaging 1991; 38: 1106–1110
  • Geddes L., Baker L.E. The specific resistance of biological materials: a compendium of data for the biomedical engineer and physiologist. Medical and Biological Engineering 1967; 5: 271–293
  • Gencer N.G., Kuzoglu M., Ider Y.Z. Electrical impedance tomography using induced currents. IEEE, Transactions on Medical Imaging 1994; 13: 338–350, Describes a scheme for exciting the body using magnetic induction
  • Geselowitz B.D. An application of electrocardiographic lead theory to impedance plethysmography. IEEE, Transactions on Biomedical Engineering 1971; BME-18: 38–41
  • Gibbs N.E., Poolee W.G., Jr., Stockmeyer P.K. An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM Journal of Numerical Analysis 1976; 13: 236–250
  • Gjelsvik A., Aam S., Holten L. Hachtel's augmented matrix method-A rapid method improving numerical stability in power system static state estimation. IEEE Transactions on Power Apparatus and Systems 1985; PAS-104: 2987–2992
  • Goble I., Isaacson D. Optimal current patterns for three-dimensional electric current computed tomography. Proceedings of IEEE, EMS 1989; 11: 463–464
  • Goldensohn R.A., Zablow L. An electrical spirometer. Journal of Applied Physiology 1959; 14: 463–464
  • Goovaerts H.G., De Vries E.R., Meijer J.H., De Vries P.M.J.M., Donker A.J.M., Schneider H. Microprocessor-based system for measurement of electrical impedances during haemodialysis and in postoperative care. Medical and Biological Engineering and Computing 1988; 26: 75–80
  • Gould G.A., Gugger M., Molloy J., Tsara V. Breathing pattern and eye movement density during REM sleep in humans. American Reviews of Respiratory Disease 1988; 138: 874–877
  • Griffiths H., Antal J., Ahmed A. Non invasive thermometry using applied potential tomography. Strahlentherapie 1985; 161: 534
  • Grifftths H., Zliang Z. Dual-frequency electrical impedance tomography in vitro and. in vivo. Proceedings of the IEEE, EMBS 1989; 11: 476–477
  • Guardo R., Boulay C., Murry B., Bertrand M. An experimental study in electrical impedance tomography using backprojection reconstruction. IEEE Transactions on Biomedical Engineering 1991; 38: 617–627
  • Hager W.W. Applied Numerical Linear Algebra. Prentice-Hall, Englewood Cliffs, NJ 1988
  • Heighway E.A., Biddlecombe C.S. Two dimensional automatic triangluar mesh generation for the finite element electromagnetics package PE2D. ZEEE, Transactions on Magnetics 1982; MAG-18: 594–598
  • Henderson R.P., Webster J.G. An impedance camera for spatially specific measurements of the thorax. IEEE, Transactions on Biomedical Engineering 1978; BME-25: 250–254
  • Henderson R.P., Webster J.G., Swanson D.K. A thoracic electrical impedance camera. Proceedings of the IEEE, EMBS 1976; 18: 322
  • Hill D.W., Thompson F.D. The effect of haemat-ocrit on the resistivity of human blood at 37 deg C and 100 kHz. Medical and Biological Engineering 1975; 13: 182–186
  • Holder D.S. Physiological constraints to imaging brain function with EIT and scalp electrodes. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1990
  • Holder D.S. University College London, LondonUK. 1991, Ph.D. thesis
  • Holder D.S. Physiological constraints to imaging brain function using scalp electrodes. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993a
  • Holder D.S. Opportunities for EIT in the nervous system. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1993b
  • Holder D.S., Brown B.H. Biomedical application of EIT: a critical review. Clinical and Physiological Applications of EIT, D.S. Holder. UCL Press, London 1993, A thorough and detailed examination of reported experiments where EIT was used in various clinical applications
  • Hu M.O., Hua P., Webster J.G. Measurement error in an electrical impedance tomography system. Proceedings of the IEEE 1987; 9: 1425–1426
  • Hua P., Webster J.G., Tompkins W.I. Effect of the measurement method on noise handling and image quality of EIT imaging. Proceedings of the IEEE, EMS 1987; 9: 1429–1430
  • Hua P., Woo E.J., Tompkins W.J., Webster J.G. An electrical impedance tomograph using compound electrodes. Proceedings of the IEEE, EMBS 1989; 11: 472–473
  • Hua P., Woo E.J., Webster J.G. Using compound electrodes in electrical impedance tomography. IFFX, Transactions on Biomedical Engineering 1993; 40: 29–34
  • Hua P., Woo E.J., Webster J.G., Tomkins W.J. Finite element modelling of the electrode - skin contact impedance in electrical impedance tomography. IEEE, Transactions on Biomedical Engineering 1993; 40: 335–343
  • Hua P., Woo E.J., Webster J.G., Tompkins W.J. Iterative reconstruction methods using regularisation and optimal current patterns in electrical impedance tomography. IEEE, Transactions on Medical Imaging 1991; 10: 621–628
  • Hussain M.A., Noble B., Becker B. Computer simulation of an inverse problem for electric current computed tomography using a uniform triangular discretization. Proceedings of the IEEE, EMBS 1989; 11: 448–450
  • Ider Y.Z., Altan C., Atalar E., Gencer N.G. Electrical impedance imaging system applicable to objects of arbitrary but known boundary. Proceedings of the IEEE, EMBS 1987; 9: 1427–1428
  • Ider YZ., Dorken E., Gencer N.G., Koymen H. A dual modality imaging system for impedance tomography with ultrasonically determined boundaries. Proceedings of the IEEE, EMBS 1988; 10: 283–284
  • Inman J.R., Ryu J., Ward S.H. Resistivity inversion. Geophysics 1973; 38: 1088–1108
  • Isaacson D. Distinguishability of conductivities by electric current computed tomography. IEEE, Transactions on Medical Imaging 1986; 5: 91–95
  • Isaacson D., Cheney M. Comments on reconstruction algorithms. Clinical Physics and Physiological Measurement 1992; 13: 83–89, suppl. A
  • Jack J.J.B., Noble D., Tsien R.W. Electric Current Flow in Excitable Cells. Blackwell, Oxford 1975
  • Jossinet J., Tourtel C., Jarry R. Active current electrodes for in-vivo electrical impedance tomography. Clinical Physics and Physiological Measurement 1994; 15: 83–90, sup pl. 2A
  • Kanai H., Haeno M., Sakamoto K. Electrical measurement of fluid distribution in legs and arms. Medical Progress and Technology 1987; 12: 159–170
  • Kim Y., Woo H.W., Luedtke A.E. Impedance tomography and its application in deep venous thrombosis detection. Engineering in Medicine and Biology Magazine March, 1989
  • Kotre C.J. EIT image reconstruction using sensitivity weighted filtered backprojection. Physiology Measurements 1994; 15: 125–136, Suppl. 2A
  • Koukourlis C.S., Kyriacou G.A., Smos J.N. An improvement of the common-mode rejection in EIT. Innovation and Technology in Biology and Medicine 1994; 15: 90–96, SUPPI. l
  • Koukourlis C.S., Kyriakou G.A., Sahalos J.N. Differential synchronous demodulation for electrical impedance tomography. Clinical Physics and Physiology Measurements 1992; 13: 31–34, (suppl. A), Describes a method for improving the common-mode rejection in impedance measurement by demodulating the signals from each electrode prior to subtraction. The differential amplifier is provided with signals at DC, where it has the greatest common-mode rejection
  • Koukourlis C.S., Mou G.A., Sahalos J.N. Performance of a differential synchronous demodulator for electrical impedance tomography. Clinical Physics and Physiological Measurement 1992; 13: 35–38, suppl. A
  • Kozuoglu M., Leblebicioglu K., Ider Y.Z. A fast image reconstruction technique for electrical impedance tomography. Physiological Measurement 1994; 15: 115–124, suppl. 2A
  • Lassen N.A. Cerebral blood flow tomography with xenon-133. Seminars in Nuclear Medicine 1985; 15: 347–356
  • Lassen N.A, Sveinsdottir E., Kao L., Stokely E.M., Rommer P. A fast moving single positron emmission tomograph for regional cerebral blood flow studies in man. Journal of Computer Assisted Tomography 1978; 2: 661–662
  • Leung H.T.L., Williams R.J., Griffiths H. (1990) A wideband current source for electrical impedance tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University Press, Sheffield
  • Li J., Joppek C., Faust U. An isolated wideband current source used in multifrequency electrical impedance tomography. Innovation and Technology in Biology and Medicine 1994; 15: 63–68, suppl. l
  • Lidgey F.J., Vere-Hunt M.A., Toumazou C. (1990) Developments in current driver circuitry. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University Press, Sheffield
  • Lu I., Brown B., Barber D.C., Leathard A.D. A fast parametric modelling algorithm with the Powell method. Physiological Measurements 1995; 16: 39–49, suppl. 3A
  • Marquardt D.W. An algorithm for leastsquares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 1963; 11: 431–441
  • McAdams E.T., Jossinet J. (1990) Electrode-skin impedance in electrical impedance tomography. Proceedings of the Copenhagen Meeting m Electrical Impedance Tomography. 1990, T.J. Hames. Sheffield University Press, Sheffield
  • McArdle F.J., Brown B.H., Angel A. Imaging of resistivity changes in the adult head during the cardiac cycle. Proceedings of the IEEE, EMBS 1989; 11: 480–481
  • McArdle F.J., Brown B.H., Angel A. Imaging cardiosynchronous impedance changes in the adult head. Clinical and Physiological Applications of Electrical Impedance Tomography, D.S. Holder. UCL Press, London 1990
  • McArdle F.J., Brown B.H., Pearse R.G., Barber D.C. The effect of the skull of low-birthweight neonates on applied potential tomography imaging of centralised resistivity changes. Clinical Physics and Physiology Measurements 1988; 9: 55–60, suppl. A
  • McClelland G.R., Sutton J.A. Epigastric impedance: a non invasive method for the assessment of gastric emptying and motility. Gut 1985; 26: 607–614
  • McDougall D., Shizgal H.M. Body composition measurements from whole body resistance and reactance. Surgical Forum 1986; 37: 42–44
  • McLeod C.N., Breckon W.R., Murphy D. (1990) OXPACT the development of an adaptive current tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography. 1990, T.J. Hames. Sheffield University, Sheffield
  • Murai T., Kagawa Y. Electrical impedance computer tomography based on a finite-element model. IEEE, Transactions on Biomedical Engineering 1985; BME-32: 177–184
  • Murphy D., Burton P., Coombs R., Tarassenko L., Rolfe P. Impedance imaging in the newborn. Clinical Physics and Physiology Measurements 1987; 8: 131–140, suppl. A
  • Nakayama K., Yagi W., Yagi S. Fundamental study on electrical impedance CT algorithm utilizing sensitivity theorem on impedance plethysmography. Proceedings of the Annual Conference in Bioimpedance 1981; 5: 99–102
  • Newell J.C., Gisser D.G., Isaacson D. An electric current tornograph. IEEE, Transactions on Biomedical Engineering 1988; 35: 828–833
  • Nyboer J., Bagno S., Barnett A., Msw RH. Radiocardiograms: electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. Journal of Clinical Investigations 1950; 19: 963
  • Ow S., Nyrén M., Nicander I., Emtestam I. Electrical impedance compared with other non-invasive bioengineering techniques and visual scoring for detection of irritation in human skin. British Journal of Dermatology 1994; 130: 29–36
  • Pallas-Areny R, Casas O. Modeling of systematic errors in dual-frequency EIT. Innovation and Technology in Biology and Medicine 1994; 15: 109–115, suppl. l
  • Patterson R., Ranganathan C., Engel R., Berkseth R. Measurement of body fluid volume change using multisite impedance measurements. Medical and Biological Engineering and Computing 1988; 26: 33–37
  • Paulson K., Breckon W., Pidcock M.K. (1990) The importance of electrode modeling in electrical impedance tomography. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomgraphy, Copenhagen, 1990, T.J. Hames. Sheffield University, Sheffield
  • Persson B.R.R., Blad B., Weber L. (1990) The use of electrical impedance tomography for non-invasive temperature monitoring in hyperthermia treatment of cancer. Proceedings of the Copenhagen Meeting on Electrical Impedance Tomography, Copenhagen, 1990, T.J. Hames. Sheffield University, Sheffield
  • Peterson S.B. Flow, perfusion and diffusion: the potential role of NMR. The Impact of Functional Imaging in Neurology and Psychiatry, J. Wade. John Libbey, London 1987
  • Pethig R. Dielectric and Electric Properties of Biological Materials. John Wiley, Chichester 1979
  • Pethig R. Dielectric properties of biological materials: biophysical and medical applications. IEEE, Transactions on Electrical Insulation 1984; EI-19: 453–474
  • Pilkington T., Eyuboglu M., Wolf P. Utilization of esophageal reference electrode to enhance impedance imaging. Proceedings of the IEEE, EMBS 1989; 11: 482
  • Plonsey R., Collin R. Electrode guarding in electrical impedance measurements of physiological systems-a critique. Medical and Biological Engineering and Computing 1977; 15: 519–527
  • Polkey C.P. Neurosurgery. A Textbook of Epilepsy, J. Laidlaw, A.N. Richens, J. Oxley. Churchill Livingstone, London 1988
  • Pomerntz M., Baurngartner R., Lauridson J., Eiseman B. Transthoracic electrical impedance for the early detection of pulmonary edema. Surgery 1969; 66: 260–268
  • Porter R., Adey W.R., Kado R.T. Measurement of electrical impedance in the hunian brain. Neurology 1964; 14: 1002–1012
  • Powell H.M., Barber D.C., Freeston I.L. Impedance imaging using a linear electrode array. Proceedings of the IEE International Conference on Electric and Magnetic Fields in Medicine and Biology 1985; 88: 92
  • Powell H.M., Barber D.C., Freeston I.L. Impedance imaging using linear electrode arrays. Clinical Physics and Physiological Measurement 1987; 8: 109–118, suppl. A
  • Rabbini K.S., Kabir A.M.B.H. Studies of the effect of the third dimension on a two-dimensional electrical impedance tomography system. Clinical Physics and Physiological Measurement 1991; 12: 393–402
  • Railton R., Fischer J., Mitchell I., Barciay R.P.C. Long-term respiration monitoring in infants—a comparison of impedance and pressure capsule monitors. Clinical Physics and Physiological Measurement 1983; 4: 91–94
  • Reddy G.N., Saha S. Electrical and dielectric properties of wet bone as a function of frequency. IEEE, Transactions in Biomedical Engineering 1984; BME-31: 296–302
  • Rosell J., Riu P. Common-mode feedback in electrical impedance tomography. Clinical Physics and Physiological Measurement 1992; 13: 11–14, suppl. A
  • Rosell J., Riu P., Pallas-Areny R. A parallel data acquisition system for electrical impedance tomography. Proceedings of the IEEE 1989; 11: 459–460
  • Roy K.K., Rao K.P. Limiting depth of detection in line electrode systems. Geophysics Pros 1977; 25: 758–767
  • Ruch T.C., Patton H.D. Physiology and Biophysics. WB Saunders, Philadelphia 1965
  • Rush S., Abildskov J.A., McFee R. Resistivities of body tissues at low frequency. Circulation Research 1963; 12: 40–49
  • Sahakian A.V., Tompkins W.I., Webster J.G. Electrode motion artifacts in electrical impedance pneumography. IEEE, Transactions in Biomedical Engineering 1985; BME-32: 449–451
  • Sakamoto K., Yorkey T.J., Webster J.G. Some physical results from an impedance camera. Clinical Physics and Physiological Measurement 1987; 8: 71–76, suppl. A
  • Sansen W., Geeraerts B., Van Petegem W., Stetaert M. Electrical impedance tomography systems based on voltage drive. Clinical Physics and Physiological Measurement 1992; 13: 35–42, suppl. A
  • Sato N., Tinney W.F. Techniques for exploiting the sparsity of the network admittance matrix. IEEE, Transactions on Power Apparatus and Systems 1963; Pas-82: 944–949
  • Schwan H.P. Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics 1957; 5: 147–209
  • Schwan H.P. Alternating current spectroscopy of biological substances. Proceedings of the IRE 1959; 11: 1841–1855
  • Schwan H.P., Kay C.F. Specific resistance of body tissues. Circulation Research 1956; 4: 644–670
  • Schwan H.P., Schwan J., Maczuk J., Pauly H. On the low-frequency dispersion of colloidal particles in electrolyte solution. Journal of Physical Chemistry 1962; 66: 2626–2635
  • Seagar A., Bates R. Full-wave computed tomography. Part 4: Low-frequency electric current CT. IEE Proceedings A 1985; 132: 455–466
  • Sugar A., Yeo M., Bates R. Full-wave computed tomography. Part 2: Resolution limits. IEEE Proceedings A 1984; 131: 612–622
  • Sinton A.M., Brown B.H., Barber D.C., McArdle F.J., Leathard A.D. Noise and spatial resolution of a real-time EIT. Clinical Physics and Physiological Measurement 1992; 13: 125–30, suppl. A
  • Skidmore R., Evans J.M., Jenkins D., Wells P.N.T. A data collection system for gathering electrical impedance measurements from the human breast. Clinical Physics and Physiological Measurement 1987; 8: 99–102, suppl. A
  • Smith R.W.M., Freeston I.L., Brown B.H. Digital demodulation for electrical impedance imaging. Proceedings of the IEEE, EMBS 1989; 11: 1744–1745
  • Stein I.M. Patterns of pediatric pneumogram. Medical Instrumentation 1979; 13: 177–180
  • Tarassenko I., Pidcock M.K., Murphy D.F., Rolfe P. The development of impedance imaging techniques for use in the newborn at risk of intra-ventricular hemorrhage. Proceedings of the IEE International Conference on Electric and Magnetic Fields in Medicine and Biology, London, 1985, 83–87
  • Ter-Pogossian M.M. Basic principles of computed axial tomography. Seminar in Nuclear Medicine 1977; 7: 109–127
  • Tinney W.F., Brandwaffin V., Chan S.M. Sparse vector methods. LEEE Transactions on Power Apparatus and Systems 1985; PAS-104: 295–301
  • Tinney W.F., Walker J.W. Direct solutions of sparse network equations by optimally ordered triangular factorization. Proceedings of the IEEE 1967; 55: 1801–1809
  • Toumazou C., Lidgey F.J. Novel current-mode instrumentation amplifier. Electronic Letters 1989; 25: 228–230
  • Towers M.S. Programmable waveform generator using linear interpolation with multiplying D/A convertors. IEEE Proceedings G 1982; 129: 18–25
  • Trillaud C., Jossinet J. An improved design of voltmeter for semi-parallel data acquistion. Clinical Physics and Physiology Measurement 1992; 13: 5–10, (suppl. A), Shows how a transformer may be used to improve the commonmode rejection ratio of a ‘3 op-amp’ differential amplifier
  • Van Buren J.M. Complications of surgical procedures in the diagnosis and treatment of epilepsy. Surgical Treatment of the Epilepsies, J. Engel. Raven Press, New York 1987
  • Vander Walt P.W. A Wien-bridge oscillator with highgain amplitude stability. IEEE Transactions on Instrument Measurements 1981; IM-30: 292–294
  • Van Oosterom A. History and evolution of methods for solving the inverse problem. Journal of Clinical Neuro physiology 1991; 8: 371–380
  • Volpe S.J. Current methods in neonatal medicine. New England Journal of Medicine 1981; 304: 886–891
  • Warburton D., Stark A.R., Tacusch H.W. Apnea monitor failure in infants with upper airway obstruction. Pediatrics 1977; 60: 742–744
  • Wexler A., Fry B., Neuman M.R. Impedance-computer tomography algorithm and systems. Applied Optics 1985; 24: 3985–3992
  • Wiley J.D., Webster JG. Distributed equivalent circuit models for circular dispersive electrodes. IEEE, Transactions on Biomedical Engineering 1982; BME-29: 385–389
  • Wilson B. A lowdistortion bipolar feedback current amplifier technique. IEEE Proceedings 1981; 69: 1514–1515
  • Wilson B. Current mirrors, amplifiers and dumpers. Electronics Wireless World 1991; 87: 47–50
  • Woo E.J., Hua P., Tompkins W.J., Webster J.G. A finite element model with node renumbering of adaptive impedance imaging. Proceedings of the IEEE, EMBS 1988; 10: 277–278
  • Woo E.J., Hua P., Tompkins W.J., Webster J.G. 32-electrode electrical impedance tomograph-software design and static images. Proceedings of the IEEE, EMBS 1989; 11: 455–456
  • Woo E.J., Hua P., Webster J.G., Tompkins W.J. A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography. IEEE, Transactions on Medical Imaging 1993; 12: 137–146
  • Yorkey T.J., Webster J.G., Tompkins W.J. Errors caused by contact impedance in impedance imaging. Proceedings of the IEEE, EMBS 1985; 7: 632–637
  • Zheng E., Shao S., Webster J.G. Impedance of skeletal muscle from 1 Hz to 1 MHz. IEEE, Transactions on Biomedical Engineering 1984; BME-31: 477–481
  • Zhu Q.S., Lidgey F.J., Vere-Hunt M.A. Improved wideband instrumentation amplifier. Clinical Physics and Physiological Measurement 1992; 13: 51–55, (suppl. A), A differential amplifier which uses the currentconveyer principle to achieve a high common-mode rejection

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.