24
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Detailed model of the thorax as a volume conductor based on the visible human man data

, , &
Pages 126-133 | Published online: 09 Jul 2009

References

  • Johnson C. R., MacLeod R. S., Ershler P. R. A computer model for the study of electrical current flow in the human thorax. Computers in Biology and Medicine 1992; 22: 305–323
  • Karlon W. J., Lehr J. L., Eisenberg S. R. Finite element models of thoracic conductive anatomy: sensitivity to changes in inhomogeneity and anisotropy. IEEE Transactions on Biomedical Engineering 1994; 41: 1010–1017
  • Hyttinen J., Kauppinen P., Seinonen T., Larne P., Eskola H., Malmivo J. Application of the visible human man data for modelling of the human thorax as a volume conductor. Electrocardiology 1996 - From the Cell to the Body Surface, J. Liebman. World Scientific, Singapore 1997; 173–176
  • Klepfer R. N., Johnson C. R., MacLeod R. S. The effects of inhomogeneities and anisotropics on electrocardiographic fields: a 3-D finite-element study. IEEE. Transactions on Biomedical Engineering 1997; 44: 706–719
  • Huiskamp G. J., van Oosterom A. Heart position and orientation in forward and inverse electrocardiography. Medical and Biological Engineering and Computing 1992; 30: 613–620
  • Gulrajani R. M., Mailloux G. E. A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials using realistic heart and torso models. Circulation Research 1983; 52: 45–56
  • Shahidi A. V., Savard P. Forward problem of electrocardiography: construction of human torso models and field calculations using finite element method. Medical and Biological Engineering and Computing 1994; 32(suppl. 4)25–33
  • Hyttinen J., Vk J., Lehtinen R., Plonsky R., Malmivuo J. Computer model analysis of the relationship of ST-segment and ST-segment/heart rate slope response to the constituents of the ischemic injury source. Journal of Electrocardiology 1997; 30: 161–173
  • Johnson C. R. Numerical methods for bioelectric field problems. Biomedical Engineering Handbook, F. D. Bronzino. CRC Press, Connecticut 1995; 162–180
  • Ackerman M. J. The visible human project. Journal of Biocommunications 1991; 18: 14
  • Lindberg D. A., Humphreys B. L. Computers in medicine. Journal of the American Medical Informatics Association 1995; 273: 1667–1668
  • Spitzer V., Ackerman M. J., Scherztnger A. L., Whitlock D. The visible human male: a technical report. Journal of the American Medical Informatics Association 1996; 3: 118–130
  • Toh M. Y., Falk R. B., Main J. S. Interactive brain atlas with the visible human project data: development methods and techniques. Radiographics 1996; 16: 1201–1206
  • Tiede U., Schiemann T., Höhne K. H. Visualizing the visible human. IEEE Computer Graphics and Applications 1996; 16: 7–9
  • Malmivuo J. A., Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York 1995
  • Heinonen T., Eskola H., Dasttdar P., Laarne P., Malmivuo J. Segmentation of Tl MR scans for reconstruction of resistive head models. Computer Methods and Programs in Biomedicine 1997; 54: 173–181
  • Walker S. J., Kilpatrick D. Forward and inverse electrocardiographic calculations using resistor network models of the human torso. Circulation Research 1987; 61: 504–513
  • Hytttnen J. A. K. Development of regional aimed EGG leads especially for myocardial ischemia diagnosis. PhD dissertation, Tampere University of Technology, TampereFinland 1994
  • Laarne P., Eskola H., Hyttinen J., Suihko V., Malmivuo J. Validation of a detailed model of the electrical fields in the brain. Journal of Medical Engineering and Technology 1995; 19: 84–87
  • Kauppinen P., Hyttinen J., Laarne P., Malmivuo J. A. Software Implementation for detailed volume conductor modelling in electrophysiology using finite difference method. Computer Methods and Programs in Biomedicine, (submitted)
  • Smith G. D. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford 1995
  • Wang L., Patterson R. P. Multiple sources of the impedance cardiogram based on 3-D finite difference human diorax models. IEEE Transactions on Biomedical Engineering 1995; 42: 141–148
  • Panescu D., Webster J. G., Tompkins W. J., Stratbucker R. A. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax. IEEE Transactions on Biomedical Engineering 1995; 42: 185–192
  • Hyttinen J., Arthur R. A., Kauppinen P., Malmivuo J. Parallel processing approach for finite difference modelling of human diorax as a volume conductor. 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, ChicagoUSA, 1997; 19: 2082–2084
  • Epstein B. R., Foster K. R. Anisotrophy as a dielectric property of skeletal muscle. Medical and Biological Engineering and Computing 1982; 21: 51–55

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.