364
Views
33
CrossRef citations to date
0
Altmetric
Review Article

Insights on membrane topology and structure/function of UDP-glucuronosyltransferases

, &
Pages 159-166 | Received 24 Jul 2009, Accepted 24 Sep 2009, Published online: 06 Oct 2009

References

  • Antonio, L., Grillasca, J. P., Taskinen, J., Elovaara, E., Burchell, B., Piet, M. H., et al. (2002). Characterization of catechol glucuronidation in rat liver. Drug Metab Dispos 30:199–207.
  • Barré, L., Magdalou, J., Netter, P., Foumel-Gigleur, S., Ouzzine, M. (2005). The stop transfer sequence of the human UDP-glucuronosyltransferase 1A determines localization to the endoplasmic reticulum by both static retertion and retrieval mechanisms.
  • Barré, L., Fournel-Gigleux, S., Finel, M., Netter, P., Magdalou, J., Ouzzine, M. (2007). Substrate specificity of the human UDP-glucuronosyltransferases, UGT2B4 and UGT2B7. Identification of a critical aromatic amino acid residue at position 33. FEBS J 274:1256–1264.
  • Battaglia, E., Nowell, S., Drake, R. R., Magdalou, J., Fournel-Gigleux, S., Senay, C., et al. (1997). Photoaffinity labeling studies of the human recombinant UDP-glucuronosyltransferase, UGT1*6, with 5-azido-UDP-glucuronic acid. Drug Metab Dispos 25:406–411.
  • Battaglia, E., Pritchard, M., Ouzzine, M., Fournel-Gigleux, S., Radominska, A., Siest, G., et al. (1994a). Chemical modification of human UDP-glucuronosyltransferase UGT1*6 by diethyl pyrocarbonate: possible involvement of a histidine residue in the catalytic process. Arch Biochem Biophys 309:266–272.
  • Battaglia, E., Senay, C., Fournel-Gigleux, S., Herber, R., Siest, G., Magdalou, J. (1994b). The chemical modification of human liver UDP-glucuronosyltransferase UGT1*6 reveals the involvement of a carboxyl group in catalysis. FEBS Lett 309:266–272.
  • Bock, K. W., Kohle, C. (2009). Topological aspects of oligomeric UDP-glucuronosyltransferases in endoplasmic reticulum membranes: advances and open questions. Biochem Pharmacol 77:1458–1465.
  • Bourne, Y., Henrissat, B. (2001). Glycoside hydrolases and glycosyltransferases: familie and functional modules. Curr Opin Struct Biol 11:593–600.
  • Chen, H., Kendall, D. A. (1995). Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation. J Biol Chem 270:14115–14122.
  • Coffman, B. L., Kearney, W. R., Goldsmith, S., Knosp, B. M., Tephly, T. R. (2003). Opioids bind to the amino acids, 84 to 118, of UDP-glucuronosyltransferase UGT2B7. Mol Pharmacol 63:283–288.
  • de Leon, J. (2003). Glucuronidation enzymes, genes, and psychiatry. Int J Neuropsychopharmacol 6:57–72.
  • Fondeur-Gelinotte, M., Lattard, V., Oriol, R., Mollicone, R., Jacquinet, J. C., Mulliert, G., et al. (2006). Phylogenetic and mutational analyses reveal key residues for UDP-glucuronic acid binding and activity of beta1,3-glucuronosyltransferase I (GlcAT-I). Protein Sci 15:1667–1678.
  • Fournel-Gigleux, S., Netter, P., Magdalou, J., Ouzzine, M. (2005). Advances in the structural aspects of the UDP-glucuronosyltransferases. In: Benedetti, A., et al. (Eds.), Endoplasmic reticulum: a metabolic compartment, vol 263 (pp 143–149 ). Amsterdam, Berlin, Oxford, Tokyo, Washington DC: IOS Press.
  • Fujiwara, R., Nakajima, M., Yamanaka, H., Yokoi, T. (2009). Key amino acid residues responsible for the differences in substrate specificity of human UDP-glucuronosyltransferase (UGT)1A9 and UGT1A8. Drug Metab Dispos 37:41–46.
  • Garinot-Schneider, C., Lellouch, A. C., Geremia, R. A. (2000). Identification of essential amino acid residues in the Sinorhizobium meliloti glucosyltransferase, ExoM. J Biol Chem 275:31407–31413.
  • Grizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Dohi, H., et al. (2006). Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. J Mol Biol 363:383–394.
  • Ha, S., Gross, B., Walker, S. (2001). E. coli MurG: a paradigm for a superfamily of glycosyltransferases. Curr Drug Targ Infect Disord 1:201–213.
  • Harley, C. A., Tipper, D. J. (1996). The role of charged residues in determining transmembrane protein insertion orientation in yeast. J Biol Chem 271:24625–24633.
  • Ikushiro, S., Emi, Y., Iyanagi, T. (1997). Protein-protein interactions between UDP-glucuronosyltransferase isoenzymes in rat hepatic microsomes. Biochemistry 36:7154–7161.
  • Ikushiro, S., Murakami, Y., Emi, Y., Iyanagi, T. (2003). Hetero-oligomeric interaction between UDP-glucuronosyltransferase (UGT) isozymes and hepatic microsomes. Drug Metab Rev 35(Suppl 1):58.
  • Kapitonov, D., Yu, R. K. (1999). Conserved domains of glycosyltransferases. Glycobiology 10:961–978.
  • Kerdpin, O., Mackenzie, P. I., Bowalgaha, K., Finel, M., Miners, J. O. (2009). Influence of N-terminal domain histidine and proline residues on the substrate selectivties of human UDP-glucuronosyltransferase (UGT) 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 37:1948–1955. [Epub 2009 June 1]
  • Kubota, T., Lewis, B. C., Elliot, D. J., Mackenzie, P. I., Miners, J. O. (2007). Critical roles of residues 36 and 40 in the phenol and tertiary amine aglycone substrate selectivities of UDP-glucuronosyltransferases 1A3 and 1A4. Mol Pharmacol 72:1054–1062.
  • Lewis, B. C., Mackenzie, P. I., Miners, J. O. (2007). Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis. Arch Biochem Biophys 468:58–69.
  • Li, D., Fournel-Gigleux, S., Barré, L., Mulliert, G., Netter, P., Magdalou, J., et al. (2007). Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 282:36514–36524.
  • Mackenzie, P. I. (1990). Expression of chimeric cDNAs in cell culture defines a region of UDP-glucuronosyltransferase involved in substrate selection. J Biol Chem 265:3432–3435.
  • Miley, M. J., Zielinska, A. K., Keenan, J. E., Bratton, S. M., Radominska-Pandya, A., Redinbo, M. R. (2007). Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme, UDP-glucuronosyltransferase 2B7. J Mol Biol 369:498–511.
  • Miners, J. O., Smith, P. A., Sorich, M. J., McKinnon, R. A., Mackenzie, P. I. (2004). Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 44:1–25.
  • Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B. G., Tarling, C. A., et al. (2006). Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. Embo J 25:1396–1405.
  • Ouzzine, M., Barré, L., Netter, P., Magdalou, J., Fournel-Gigleux, S. (2006). Role of the carboxyl terminal stop transfer sequence of UGT1A6 membrane protein in ER targeting and translocation of upstream lumenal domain. FEBS Lett 580:1953–1958.
  • Ouzzine, M., Gulberti, S., Netter, P., Magdalou, J., Fournel-Gigleux, S. (2000). Structure/function of the human Ga1beta1,3-glucuronosyltransferase. Dimerization and functional activity are mediated by two crucial cysteine residues. J Biol Chem 275:28254–28260.
  • Ouzzine, M., Magdalou, J., Burchell, B., Fournel-Gigleux, S. (1999). An internal signal sequence mediates the targeting and retention of the human UDP-glucuronosyltransferase, 1A6, to the endoplasmic reticulum. J Biol Chem 274:31401–31409.
  • Pedersen, L. C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T. A., Negishi, M. (2000). Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J Biol Chem 275:34580–34585.
  • Radominska-Pandya, A., Czernik, P. J., Little, J. M., Battaglia, E., Mackenzie, P. I. (1999). Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31:817–899.
  • Senay, C., Ouzzine, M., Battaglia, E., Pless, D., Cano, V., Burchell, B., et al. (1997). Arginine 52 and histidine 54 located in a conserved N-terminal hydrophobic region (LX2-R52-G-H54-X3-V-L) are important amino acids for the functional and structural integrity of the human liver UDP-glucuronosyltransferase, UGT1*6. Mol Pharmacol 51:406–413.
  • Shao, H., He, X., Achnine, L., Blount, J. W., Dixon, R. A., Wang, X. (2005). Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154.
  • Smith, P. A., Sorich, M. J., McKinnon, R. A., Miners, J. O. (2003). Pharmacophore and quantitative structure-activity relationship modeling: complementary approaches for the rationalization and prediction of UDP-glucuronosyltransferase 1A4 substrate selectivity. J Med Chem 46:1617–1626.
  • Sorich, M. J., McKinnon, R. A., Miners, J. O., Smith, P. A. (2006). The importance of local chemical structure for chemical metabolism by human uridine 5’-diphosphate-glucuronosyltransferase. J Chem Inf Model 46:2692–2697.
  • Sorich, M. J., Miners, J. O., McKinnon, R. A., Smith, P. A. (2004). Multiple pharmacophores for the investigation of human UDP-glucuronosyltransferase isoform substrate selectivity. Mol Pharmacol 65:301–308.
  • Sorich, M. J., Smith, P. A., McKinnon, R. A., Miners, J. O. (2002). Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates. Pharmacogenetics 12:635–645.
  • Starlard-Davenport, A., Xiong, Y., Bratton, S., Gallus-Zawada, A., Finel, M., Radominska-Pandya, A. (2007). Phenylalanine(90) and phenylalanine(93) are crucial amino acids within the estrogen binding site of the human UDP-glucuronosyltransferase 1A10. Steroids 72:85–94.
  • Sun, H. Y., Lin, S. W., Ko, T. P., Pan, J. F., Liu, C. L., Lin, C. N., et al. (2007). Structure and mechanism of Helicobacter pylori fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. J Biol Chem 282:9973–9982.
  • Testa, B., Kramer, S. D. (2008). The biochemistry of drug metabolism—an introduction: part 4. Reactions of conjugation and their enzymes. Chem Biodivers 5:2171–2336.
  • von Heijne, G. (1994). Signals for protein targeting into and across membranes. Subcell Biochem 22:1–19.
  • Xiong, Y., Bernardi, D., Bratton, S., Ward, M. D., Battaglia, E., Finel, M., et al. (2006). Phenylalanine 90 and 93 are localized within the phenol binding site of human UDP-glucuronosyltransferase 1A10 as determined by photoaffinity labeling, mass spectrometry, and site-directed mutagenesis. Biochemistry 45:2322–2332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.