311
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Glutathione transferase zeta: discovery, polymorphic variants, catalysis, inactivation, and properties of Gstz1−/− mice

&
Pages 215-225 | Received 24 Nov 2010, Accepted 15 Dec 2010, Published online: 08 Feb 2011

References

  • Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., et al. (1999). Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334.
  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402.
  • Ammini, C. V., Fernandez-Canon, J., Shroads, A. L., Cornett, R., Cheung, J., James, M. O., et al. (2003). Pharmacologic or genetic ablation of maleylacetoacetate isomerase increases levels of toxic tyrosine catabolites in rodents. Biochem Pharmacol 66:2029–2038.
  • Anderson, W. B., Board, P. G., Gargano, B., Anders, M. W. (1999). Inactivation of glutathione transferase zeta by dichloroacetic acid and other fluorine-lacking α-haloalkanoic acids. Chem Res Toxicol 12:1144–1149.
  • Anderson, W. B., Liebler, D. C., Board, P. G., Anders, M. W. (2002). Mass spectral characterization of dichloroacetic acid-modified human glutathione transferase zeta. Chem Res Toxicol 15:1387–1397.
  • Angaw-Duguma, L., Marecek, J., Seltzer, S. (1992). The synthesis and enzyme-catalyzed one-step cis-trans double isomerization of monomethyl 5-oxo-1,3-hexadien-1-ylphosphonate, an analog of maleylacetone. Bioorg Chem 20:213–222.
  • Bellucci, G., Berti, G., Bettoni, C., Macchia, F. (1973). Optical rotation and absolute configuration of chlorofluoroacetic acid. J Chem Soc Perkin Trans 2:292–295.
  • Blackburn, A. C., Coggan, M., Tzeng, H.-F., Lantum, H., Polekhina, G., Parker, M. W., et al. (2001). GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. Pharmacogenetics 11:671–678.
  • Blackburn, A. C., Matthaei, K. I., Lim, C., Taylor, M. C., Cappello, J. Y., Hayes, J. D., et al. (2006). Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways. Mol Pharmacol 69:650–657.
  • Blackburn, A. C., Tzeng, H.-F., Anders, M. W., Board, P. G. (2000). Discovery of a functional polymorphism in human glutathione transferase zeta by expressed sequence tag database analysis. Pharmacogenetics 10:49–57.
  • Blackburn, A. C., Woollatt, E., Sutherland, G. R., Board, P. G. (1998). Characterization and chromosome location of the gene GSTZ1 encoding the human zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet 83:109–114.
  • Board, P. G., Anders, M. W. (2005). Human glutathione transferase zeta. Meth Enzymol, 401:61–77.
  • Board, P. G., Baker, R. T., Chelvanayagam, G., Jermiin, L. S. (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328:929–935.
  • Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S., Schulte, G. K., et al. (2000). Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem 275:24798–24806.
  • Board, P. G., Taylor, M. C., Coggan, M., Parker, M. W., Lantum, H. B., Anders, M. W. (2003). Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochem J 374:731–737.
  • Böhme, H., Dorries, A. (1956). On the hydrolysis and alcoholysis of α-chlorinated ethers. [Zur Hydrolyse und Alkoholyse α-chlorierter äther].,. Chem. Ber., 89, 719–722.
  • Bray, H. G., Franklin, T. J., James, S. P. (1959). The formation of mercapturic acids. 2. The possible role of glutathione. Biochem J 71:690–696.
  • Bresell, A., Weinander, R., Lundqvist, G., Raza, H., Shimoji, M., Sun, T. H., et al. (2005). Bioinformatic and enzymatic characterization of the MAPEG superfamily. FEBS J 272:1688–1703.
  • Cho, S. G., Lee, Y. H., Park, H. S., Ryoo, K., Kang, K. W., Park, J., et al. (2001). Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755.
  • Coggan, M., Matthaei, K. I., Blackburn, A. C., Cappello, J. Y., Shield, A. J., Board, P. G., et al. (2006). The generation and characterization of glutathione transferase kappa deficient mice. Drug Metab Rev 38:124.
  • Cornett, R., James, M. O., Henderson, G. N., Cheung, J., Shroads, A. L., Stacpoole, P. W. (1999). Inhibition of glutathione S-transferase ζ and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem Biophys Res Commun 262:752–756.
  • Curry, S. H., Chu, P.-I., Baumgartner, T. G., Stacpoole, P. W. (1985). Plasma concentrations and metabolic effects of intravenous sodium dichloroacetate. Clin Pharmacol Ther 37:89–93.
  • Curry, S. H., Lorenz, A., Chu, P.-I., Limacher, M., Stacpoole, P. W. (1991). Disposition and pharmacodynamics of dichloroacetate (DCA) and oxalate following oral DCA doses. Biopharm Drug Dispos 12:375–390.
  • Dourado, D. F., Fernandes, P. A., Ramos, M. J. (2008). Mammalian cytosolic glutathione transferases. Curr Prot Pept Sci 9:325–337.
  • Ellis, M. K., Whitfield, A. C., Gowans, L. A., Auton, T. R., Provan, W. M., Lock, E. A., Smith, L. L. (1995). Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione. Toxicol Appl Pharmacol 133:12–19.
  • Feliu, A. L., Seltzer, S. (1985). Synthesis and interconversion of the four isomeric 6-oxo-2,4-heptadienoic acids. J Org Chem 50:447–451.
  • Feliu, A. L., Smith, K. J., Seltzer, S. (1984). Unique, one-step, double isomerization (2E,4Z « 2Z,4E) of 6-oxo-2,4-heptadienoic acid catalyzed by maleylacetone cis-trans isomerase. J Am Chem Soc 106:3046–3047.
  • Fernández-Cañón, J., Hejna, J., Reifsteck, C., Olson, S., Grompe, M. (1999). Gene structure, chromosomal location, and expression pattern of maleylacetoacetate isomerase. Genomics 58:263–269.
  • Fernández-Cañón, J. M., Baetscher, M. W., Finegold, M., Burlingame, T., Gibson, K. M., Grompe, M. (2002). Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 22:4943–4951.
  • Fernández-Cañón, J. M., Peñalva, M. A. (1998). Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem 273:329–337.
  • Gallagher, E. P., Gardner, J. L., Barber, D. S. (2006). Several glutathione S-transferase isozymes that protect against oxidative injury are expressed in human liver mitochondria. Biochem Pharmacol 71:1619–1628.
  • Gonzalez-Leon, A., Merdink, J. L., Bull, R. J., Schultz, I. R. (1999). Effect of pre-treatment with dichloroacetic or trichloroacetic acid in drinking water on the pharmacokinetics of a subsequent challenge dose in B6C3F1 mice. Chem Biol Interact 123:239–253.
  • Habig, W. H., Jakoby, W. B. (1981). Assays for differentiation of glutathione S-transferases. Meth Enzymol 77:398–405.
  • Habig, W. H., Pabst, M. J., Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139.
  • Harris, J. M., Meyer, D. J., Coles, B., Ketterer, B. (1991). A novel glutathione transferase (13-13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes. Biochem J 278:137–141.
  • Hayes, J. D., Flanagan, J. U., Jowsey, I. R. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.
  • Hewawasam, R., Liu, D., Casarotto, M. G., Dulhunty, A. F., Board, P. G. (2010). The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Biochem Pharmacol 80:381–388.
  • Hossain, Q. S., Ulziikhishig, E., Lee, K. K., Yamamoto, H., Aniya, Y. (2009). Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores. Toxicol Appl Pharmacol 235:77–85.
  • Islinger, M., Luers, G. H., Zischka, H., Ueffing, M., Volkl, A. (2006). Insights into the membrane proteome of rat liver peroxisomes: microsomal glutathione-S-transferase is shared by both subcellular compartments. Proteomics 6:804–816.
  • Jakobsson, P. J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., Persson, B. (1999). Common structural features of MAPEG—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Prot Sci 8:689–692.
  • James, M. O., Cornett, R., Yan, Z., Henderson, G. N., Stacpoole, P. W. (1997). Glutathione-dependent conversion to glyoxylate, a major metabolite of dichloroacetate biotransformation in hepatic cytosol from humans and rats, is reduced in dichloroacetate-treated rats. Drug Metab Dispos 25:1223–1227.
  • Johansson, K., Järvliden, J., Gogvadze, V., Morgenstern, R. (2010). Multiple roles of microsomal glutathione transferase 1 in cellular protection, a mechanistic study. Free Radic Biol Med 49:1638–1645.
  • Josephy, P. D. (2010). Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2010:Article ID 876940.
  • Jowsey, I. R., Thomson, R. E., Orton, T. C., Elcombe, C. R., Hayes, J. D. (2003). Biochemical and genetic characterization of a murine class kappa glutathione S-transferase. Biochem J 373:559–569.
  • Knox, W. E. (1955). Enzymes involved in conversion of tyrosine to acetoacetate: A. L-tyrosine-oxidzing system of liver. Meth Enzymol 2:287–300.
  • Knox, W. E., Edwards, S. W. (1955). The properties of maleylacetoacetate, the initial product of homogentisate oxidation in liver. J Biol Chem 216:489–498.
  • Lack, L. (1961). Enzymatic cis-trans isomerization of maleylpyruvic acid. J Biol Chem 236:2835–2840.
  • Lantum, H. B., Baggs, R. B., Krenitsky, D. M., Board, P. G., Anders, M. W. (2002a). Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues. Drug Metab Dispos 30:616–625.
  • Lantum, H. B., Board, P. G., Anders, M. W. (2002b). Kinetics of the biotransformation of maleylacetone and chlorofluoroacetic acid by polymorphic variants of human glutathione transferase zeta (hGSTZ1-1). Chem Res Toxicol 15:957–963.
  • Lantum, H. B., Liebler, D. C., Board, P. G., Anders, M. W. (2002c). Alkylation and inactivation of human glutathione transferase zeta (hGSTZ1-1) by maleylacetone and fumarylacetone. Chem Res Toxicol 15:707–716.
  • Lee, H. E., Seltzer, S. (1989). cis-β-acetylacrylate is a substrate for maleylacetoacetate cis-trans isomerase. Mechanistic implications. Biochem Int 18:91–97.
  • Lee, K. K., Shimoji, M., Hossain, Q. S., Sunakawa, H., Aniya, Y. (2008). Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxicol Appl Pharmacol 232:109–118.
  • Li, W., James, M. O., McKenzie, S. C., Calcutt, N. A., Liu, C., Stacpoole, P. W. (2010). Mitochondrion as a novel site of dichloroacetate biotransformation by glutathione transferase zeta 1. J Pharmacol Exp Ther 336:87–94.
  • Lim, C. E. L., Matthaei, K. I., Blackburn, A. C., Davis, R. P., Dahlstrom, J. E., Koina, M. E., et al. (2004). Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. Am J Pathol 165:679–693.
  • Lipscomb, J. C., Mahle, D. A., Brashear, W. T., Barton, H. A. (1995). Dichloroacetic acid: metabolism in cytosol. Drug Metab Dispos 23:1202–1205.
  • Mannervik, B., Board, P. G., Hayes, J. D., Listowsky, I., Pearson, W. R. (2005). Nomenclature for mammalian soluble glutathione transferases. Meth Enzymol 401:1–8.
  • Mannervik, B., Guthenberg, C. (1981). Glutathione transferase (human placenta). Meth Enzymol 77:231–235.
  • Michelakis, E. D., Sutendra, G., Dromparis, P., Webster, L., Haromy, A., Niven, E., et al. (2010). Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34.
  • Michelakis, E. D., Webster, L., Mackey, J. R. (2008). Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994.
  • Mitchell, G. A., Lambert, M., Tanguay, R. M. (1995). Hypertyrosinemia. In: Scriver, C. R., Beaudet, A. L., Sly, W., Vallee, D. (Eds.), The metabolic and molecular basis of inherited disease. New York: McGraw-Hill.
  • Morel, F., Rauch, C., Petit, E., Piton, A., Theret, N., Coles, B., et al. (2004). Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. J Biol Chem 279:16246–16253.
  • Morgenstern, R., Lundqvist, G., Andersson, G., Balk, L., Depierre, J. W. (1984). The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms. Biochem Pharmacol 33:3609–3614.
  • NCBI. (2010a). BLAST: basic local alignment search tool. Available at: http://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed October 21, 2010.
  • NCBI. (2010b). Expressed sequence tags database, dbEST. Available at: http://www.ncbi.nlm.nih.gov/projects/dbEST/. Accessed October 21, 2010.
  • Nishino, H., Ito, A. (1990). Purification and properties of glutathione S-transferase from outer mitochondrial membrane of rat liver. Biochem Int 20:1059–1066.
  • Pearson, W. R. (2005). Phylogenies of glutathione transferase families. Meth Enzymol 401:186–204.
  • Pemble, S. E., Wardle, A. F., Taylor, J. B. (1996). Glutathione S-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 319:749–754.
  • Petit, E., Michelet, X., Rauch, C., Bertrand-Michel, J., Terce, F., Legouis, R., et al. (2009). Glutathione transferases kappa 1 and kappa 2 localize in peroxisomes and mitochondria, respectively, and are involved in lipid metabolism and respiration in Caenorhabditis elegans. FEBS J 276:5030–5040.
  • Polekhina, G., Board, P. G., Blackburn, A. C., Parker, M. W. (2001). Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry 40:1567–1576.
  • Raza, H., Prabu, S. K., Robin, M. A., Avadhani, N. G. (2004). Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes 53:185–194.
  • Raza, H., Robin, M. A., Fang, J. K., Avadhani, N. G. (2002). Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45–55.
  • Robinson, A., Huttley, G. A., Booth, H. S., Board, P. G. (2004). Modelling and bioinformatics studies of the human kappa class glutathione transferase predict a novel third glutathione transferase family with homology to prokaryotic 2-hydroxychromene-2-carboxylate (HCCA) isomerases. Biochem J 379:541–542.
  • Schultz, I. R., Sylvester, S. R. (2001). Stereospecific toxicokinetics of bromochloro- and chlorofluoroacetate: effect of GST-ξ depletion. Toxicol Appl Pharmacol 175:104–113.
  • Seltzer, S. (1973). Purification and properties of maleylacetone cis-trans isomerase from Vibrio 01. J Biol Chem 248:215–222.
  • Seltzer, S., Lin, M. (1979). Maleylacetone cis-trans-isomerase. Mechanism of the interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme. J Am Chem Soc 101:3091–3097.
  • Simons, P. C., Vander Jagt, D. L. (1981). Purification of glutathione S-transferases by glutathione-affinity chromatography. Meth Enzymol 77:235–237.
  • Stacpoole, P. W. (2010). The dichloroacetate dilemma: environmental hazard vs. therapeutic goldmine—both or neither? Environ Health Perspect Oct 4. [Epub ahead of print]
  • Stevens, J. L., Jones, D. P. (1989). The mercapturic acid pathway: biosynthesis, intermediary metabolism, and physiological disposition. In: Dolphin, D., Poulson, R., Avramovic, O. (Eds.), Glutathione: chemical, biochemical, and medical aspects, part B. New York: Wiley.
  • Swartz, P. D., Richard, A. M. (2001). Use of structure-activity relationships for probing biochemical mechanisms: glutathione transferase zeta conjugation of haloacids. Adv Exp Med Biol 500:23–31.
  • Theodoratos, A., Tu, W. J., Cappello, J., Blackburn, A. C., Matthaei, K., Board, P. G. (2009). Phenylalanine-induced leucopenia in genetic and dichloroacetic acid generated deficiency of glutathione transferase zeta. Biochem Pharmacol 77:1358–1363.
  • Tong, Z., Board, P. G., Anders, M. W. (1998a). Glutathione transferase zeta catalyzes the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J 331:371–374.
  • Tong, Z., Board, P. G., Anders, M. W. (1998b). Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other α-haloacids. Chem Res Toxicol 11:1332–1338.
  • Tzeng, H.-F., Blackburn, A. C., Board, P. G., Anders, M. W. (2000). Polymorphism- and species-dependent inactivation of glutathione transferase zeta by dichloroacetate. Chem Res Toxicol 13:231–236.
  • Wagner, U., Edwards, R., Dixon, D. P., Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532.
  • Wempe, M. F., Anderson, W. B., Tzeng, H.-F., Board, P. G., Anders, M. W. (1999). Glutathione transferase zeta-catalyzed biotransformation of deuterated dihaloacetic acids. Biochem Biophys Res Commun 261:779–783.
  • Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., et al. (2006). Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–5800.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.