306
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Regulation of the cardiac muscle ryanodine receptor by glutathione transferases

, , , &
Pages 236-252 | Received 06 Dec 2010, Accepted 15 Dec 2010, Published online: 17 Feb 2011

References

  • Abdellatif, Y., Liu, D., Gallant, E. M., Gage, P. W., Board, P. G., Dulhunty, A. F. (2007). The Mu class glutathione transferase is abundant in striated muscle and is an isoform-specific regulator of ryanodine receptor calcium channels. Cell Calcium 41:429–440.
  • Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., et al. (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334.
  • Ahern, G. P., Junankar, P. R., Dulhunty, A. F. (1994). Single channel activity of the ryanodine receptor calcium release channel is modulated by FK-506. FEBS Lett 352:369–374.
  • Ahern, G. P., Junankar, P. R., Dulhunty, A. F. (1997). Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12. Biophys J 72:146–162.
  • Beard, N. A., Wei, L., Dulhunty, A. F. (2009). Ca(2+) signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. Eur Biophys J 39:27–36.
  • Bellinger, A. M., Mongillo, M., Marks, A. R. (2008a). Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J Clin Invest 118:445–453.
  • Bellinger, A. M., Reiken, S., Dura, M., Murphy, P. W., Deng, S. X., Landry, D. W., et al. (2008b). Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 105:2198–2202.
  • Berryman, M. A., Goldenring, J. R. (2003). CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton 56:159–172.
  • Betzenhauser, M. J., Marks, A. R. (2010). Ryanodine receptor channelopathies. Pflugers Arch 460:467–480.
  • Bezprozvanny, I. (2005). The inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:261–272.
  • Bhat, M. B., Zhao, J., Hayek, S., Freeman, E. C., Takeshima, H., Ma, J. (1997). Deletion of amino acids 1641–2437 from the foot region of skeletal muscle ryanodine receptor alters the conduction properties of the Ca release channel. Biophys J 73:1320–1328.
  • Blackburn, A. C., Woollatt, E., Sutherland, G. R., Board, P. G. (1998). Characterization and chromosome location of the gene GSTZ1 encoding the human zeta class glutathione transferase and maleylacetoacetate isomerase. Cytogenet Cell Genet 83:109–114.
  • Board, P. G., Coggan, M., Watson, S., Gage, P. W., Dulhunty, A. F. (2004). CLIC-2 modulates cardiac ryanodine receptor Ca2+ release channels. Int J Biochem Cell Biol 36:1599–1612.
  • Board, P. G., Suzuki, T., Shaw, D. C. (1988). Human muscle glutathione S-transferase (GST-4) shows close homology to human liver GST-1. Biochim Biophys Acta 953:214–217.
  • Brillantes, A. B., Ondrias, K., Scott, A., Kobrinsky, E., Ondriasova, E., Moschella, M. C., et al. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523.
  • Carnie, S., McLaughlin, S. (1983). Large divalent cations and electrostatic potentials adjacent to membranes. A theoretical calculation. Biophys J 44:325–332.
  • Cho, S. G., Lee, Y. H., Park, H. S., Ryoo, K., Kang, K. W., Park, J., et al. (2001). Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem 276:12749–12755.
  • Copello, J. A., Barg, S., Onoue, H., Fleischer, S. (1997). Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys J 73:141–156.
  • Cromer, B. A., Gorman, M. A., Hansen, G., Adams, J. J., Coggan, M., Littler, D. R., et al. (2007). Structure of the Janus protein human CLIC2. J Mol Biol 374:719–731.
  • Du, G. G., MacLennan, D. H. (1999). Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). J Biol Chem 274:26120–26126.
  • Dulhunty, A., Gage, P., Curtis, S., Chelvanayagam, G., Board, P. (2001). The glutathione transferase structural family includes a nuclear chloride channel and a ryanodine receptor calcium release channel modulator. J Biol Chem 276:3319–3323.
  • Dulhunty, A., Haarmann, C., Green, D., Hart, J. (2000). How many cysteine residues regulate ryanodine receptor channel activity? Antioxid Redox Signal 2:27–34.
  • Dulhunty, A. F., Haarmann, C. S., Green, D., Laver, D. R., Board, P. G., Casarotto, M. G. (2002). Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. Prog Biophys Mol Biol 79:45–75.
  • Dulhunty, A. F., Pouliquin, P., Coggan, M., Gage, P. W., Board, P. G. (2005). A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating, and activation by Ca2+ and ATP. Biochem J 390:333–343.
  • Eager, K. R., Dulhunty, A. F. (1998). Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol 163:9–18.
  • Eager, K. R., Dulhunty, A. F. (1999). Cardiac ryanodine receptor activity is altered by oxidizing reagents in either the luminal or cytoplasmic solution. J Membr Biol 167:205–214.
  • Fanucchi, S., Adamson, R. J., Dirr, H. W. (2008). Formation of an unfolding intermediate state of soluble chloride intracellular channel protein CLIC1 at acidic pH. Biochemistry 47:11674–11681.
  • Feng, W., Liu, G., Allen, P. D., Pessah, I. N. (2000). Transmembrane redox sensor of ryanodine receptor complex. J Biol Chem 275:35902–35907.
  • Fernández-Cañón, J. M., Hejna, J., Reifsteck, C., Olson, S., Grompe, M. (1999). Gene structure, chromosomal location, and expression pattern of maleylacetoacetate isomerase. Genomics 58:263–269.
  • Fernandez-Salas, E., Sagar, M., Cheng, C., Yuspa, S. H., Weinberg, W. C. (1999). p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J Biol Chem 274:36488–36497.
  • Goodchild, S. C., Howell, M. W., Littler, D. R., Mandyam, R. A., Sale, K. L., Mazzanti, M., et al. (2010). Metamorphic response of the CLIC1 chloride intracellular ion channel protein upon membrane interaction. Biochemistry 49:5278–5289.
  • Gyorke, S. (2009). Molecular basis of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 6:123–129.
  • Harrop, S. J., DeMaere, M. Z., Fairlie, W. D., Reztsova, T., Valenzuela, S. M., Mazzanti, M., et al. (2001). Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution. J Biol Chem 276:44993–45000.
  • Hayek, S. M., Zhao, J., Bhat, M., Xu, X., Nagaraj, R., Pan, Z., et al. (1999). A negatively charged region of the skeletal muscle ryanodine receptor is involved in Ca(2+)-dependent regulation of the Ca(2+) release channel. FEBS Lett 461:157–164.
  • Hayek, S. M., Zhu, X., Bhat, M. B., Zhao, J., Takeshima, H., Valdivia, H. H., et al. (2000). Characterization of a calcium-regulation domain of the skeletal-muscle ryanodine receptor. Biochem J 351:57–65.
  • Hayes, J. D., Pulford, D. J. (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600.
  • Hewawasam, R., Liu, D., Casarotto, M. G., Dulhunty, A. F., Board, P. G. (2010). The structure of the C-terminal helical bundle in glutathione transferase M2-2 determines its ability to inhibit the cardiac ryanodine receptor. Biochem Pharmacol 80:381–388.
  • Hidalgo, C., Aracena, P., Sanchez, G., Donoso, P. (2002). Redox regulation of calcium release in skeletal and cardiac muscle. Biol Res 35:183–193.
  • Jalilian, C., Gallant, E. M., Board, P. G., Dulhunty, A. F. (2008). Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family. Antioxid Redox Signal 10:1675–1686.
  • Johansson, A. S., Mannervik, B. (2001). Human glutathione transferase A3-3, a highly efficient catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J Biol Chem 276:33061–33065.
  • Kimura, T., Nakamori, M., Lueck, J. D., Pouliquin, P., Aoike, F., Fujimura, H., et al. (2005). Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14: 2189–2200.
  • Laliberte, R. E., Perregaux, D. G., Hoth, L. R., Rosner, P. J., Jordan, C. K., Peese, K. M., et al. (2003). Glutathione S-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem 278:16567–16578.
  • Lamb, G. D., Stephenson, D. G. (1994). Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478(Pt 2):331–339.
  • Laver, D. R. (2007). Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites. Biophys J 92:3541–3555.
  • Laver, D. R., Baynes, T. M., Dulhunty, A. F. (1997). Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol 156:213–229.
  • Laver, D. R., Lamb, G. D. (1998). Inactivation of Ca2+ release channels (ryanodine receptors RyR1 and RyR2) with rapid steps in [Ca2+] and voltage. Biophys J 74:2352–2364.
  • Laver, D. R., Roden, L. D., Ahern, G. P., Eager, K. R., Junankar, P. R., Dulhunty, A. F. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. J Membr Biol 147;7–22.
  • Li, Y., Li, D., Zeng, Z., Wang, D. (2006). Trimeric structure of the wild soluble chloride intracellular ion channel CLIC4 observed in crystals. Biochem Biophys Res Commun 343:1272–1278.
  • Littler, D. R., Assaad, N. N., Harrop, S. J., Brown, L. J., Pankhurst, G. J., Luciani, P., et al. (2005). Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J 272:4996–5007.
  • Littler, D. R., Harrop, S. J., Fairlie, W. D., Brown, L. J., Pankhurst, G. J., Pankhurst, S., et al. (2004). The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 279:9298–9305.
  • Littler, D. R., Harrop, S. J., Goodchild, S. C., Phang, J. M., Mynott, A. V., Jiang, L., Valenzuela, S. M., et al. (2010). The enigma of the CLIC proteins: ion channels, redox proteins, enzymes, scaffolding proteins? FEBS Lett 584:2093–2101.
  • Liu, D., Hewawasam, R., Pace, S. M., Gallant, E. M., Casarotto, M. G., Dulhunty, A. F., et al. (2009). Dissection of the inhibition of cardiac ryanodine receptors by human glutathione transferase GSTM2-2. Biochem Pharmacol 77:1181–1193.
  • Ma, J. (1995). Desensitization of the skeletal muscle ryanodine receptor: evidence for heterogeneity of calcium release channels. Biophys J 68:893–899.
  • Marengo, J. J., Hidalgo, C., Bull, R. (1998). Sulfhydryl oxidation modifies the calcium dependence of ryanodine-sensitive calcium channels of excitable cells. Biophys J 74:1263–1277.
  • Marx, S. O., Gaburjakova, J., Gaburjakova, M., Henrikson, C., Ondrias, K., Marks, A. R. (2001). Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88:1151–1158.
  • Marx, S. O., Ondrias, K., Marks, A. R. (1998). Coupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors). Science 281:818–821.
  • Marx, S. O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N., et al. (2000). PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376.
  • Meissner, G. (2002). Regulation of mammalian ryanodine receptors. Front Biosci 7:d2072–d2080
  • Meng, X., Wang, G., Viero, C., Wang, Q., Mi, W., Su, X. D., et al. (2009). CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J Mol Biol 387:320–334.
  • Menshikova, E. V., Salama, G. (2000). Cardiac ischemia oxidizes regulatory thiols on ryanodine receptors: captopril acts as a reducing agent to improve Ca2+ uptake by ischemic sarcoplasmic reticulum. J Cardiovasc Pharmacol 36:656–668.
  • Mikoshiba, K. (2007). IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446.
  • Nishie, I., Anzai, K., Yamamoto, T., Kirino, Y. (1990). Measurement of steady-state Ca2+ pump current caused by purified Ca2(+)-ATPase of sarcoplasmic reticulum incorporated into a planar bilayer lipid membrane. J Biol Chem 265:2488–2491.
  • Novarino, G., Fabrizi, C., Tonini, R., Denti, M. A., Malchiodi-Albedi, F., Lauro, G. M., et al. (2004). Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. J Neurosci 24:5322–5330.
  • Oetliker, H. (1982). An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle. J Muscle Res Cell Motil 3:247–272.
  • Pessah, I. N., Kim, K. H., Feng, W. (2002). Redox sensing properties of the ryanodine receptor complex. Front Biosci 7:a72–a79
  • Proutski, I., Karoulias, N., Ashley, R. H. (2002). Overexpressed chloride intracellular channel protein CLIC4 (p64H1) is an essential component of novel plasma membrane anion channels. Biochem Biophys Res Commun 297:317–322.
  • Raghunathan, S., Chandross, R. J., Kretsinger, R. H., Allison, T. J., Penington, C. J., Rule, G. S. (1994). Crystal structure of human class mu glutathione transferase GSTM2-2. Effects of lattice packing on conformational heterogeneity. J Mol Biol 238:815–832.
  • Samso, M., Shen, X., Allen, P. D. (2006). Structural characterization of the RyR1-FKBP12 interaction. J Mol Biol 356:917–927.
  • Serysheva, I. I., Schatz, M., van Heel, M., Chiu, W., Hamilton, S. L. (1999). Structure of the skeletal muscle calcium release channel activated with Ca2+ and AMP-PCP. Biophys J 77:1936–1944.
  • Sharma, M. R., Jeyakumar, L. H., Fleischer, S., Wagenknecht, T. (2006). Three-dimensional visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine receptor. Biophys J 90:164–172.
  • Stoychev, S. H., Nathaniel, C., Fanucchi, S., Brock, M., Li, S., Asmus, K., et al. (2009). Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry. Biochemistry 48:8413–8421.
  • Suh, K. S., Mutoh, M., Gerdes, M., Crutchley, J. M., Mutoh, T., Edwards, L. E., et al. (2005). Antisense suppression of the chloride intracellular channel family induces apoptosis, enhances tumor necrosis factor {alpha}-induced apoptosis, and inhibits tumor growth. Cancer Res 65:562–571.
  • Terentyev, D., Gyorke, I., Belevych, A. E., Terentyeva, R., Sridhar, A., Nishijima, Y., et al. (2008). Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res 103:1466–1472.
  • Trafford, A. W., Sibbring, G. C., Diaz, M. E., Eisner, D. A. (2000). The effects of low concentrations of caffeine on spontaneous Ca release in isolated rat ventricular myocytes. Cell Calcium 28:269–276.
  • Valenzuela, S. M., Martin, D. K., Por, S. B., Robbins, J. M., Warton, K., Bootcov, M. R., et al. (1997). Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem 272:12575–12582.
  • Wei, L., Gallant, E. M., Dulhunty, A. F., Beard, N. A. (2009). Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Int J Biochem Cell Biol 41:2214–2224.
  • Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., et al. (2006). Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25:5787–5800.
  • Zhang, J., Liu, Z., Masumiya, H., Wang, R., Jiang, D., Li, F., et al. (2003). Three-dimensional localization of divergent region 3 of the ryanodine receptor to the clamp-shaped structures adjacent to the FKBP binding sites. J Biol Chem 278:14211–14218.
  • Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N. M., Lai, F. A., et al. (1990). Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.