204
Views
28
CrossRef citations to date
0
Altmetric
Review Article

S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases

&
Pages 307-316 | Received 28 Sep 2010, Accepted 21 Dec 2010, Published online: 22 Mar 2011

References

  • Allocati, N., Federici, L., Masulli, M., Di Ilio, C. (2009). Glutathione transferases in bacteria. FEBS J 276:58–75.
  • Allocati, N., Federici, L., Masulli, M., Favaloro, B., Di Ilio, C. (2008). Cysteine 10 is critical for the activity of Ochrobactrum anthropi glutathione transferase and its mutation to alanine causes the preferential binding of glutathione to the H-site. Proteins 71:16–23.
  • Anandarajah, K., Kiefer, P. M. J., Donohoe, B. S., Copley, S. D. (2000). Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry 39:5303–5311.
  • Barreto, L., Garcerá, A., Jansson, K., Sunnerhagen, P., Herrero, E. (2006). A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryot Cell 5:1748–1759.
  • Board, P. G., Anders, M. W. (2007). Glutathione transferase omega 1 catalyzes the reduction of S-(phenacyl)glutathiones to acetophenones. Chem Res Toxicol 20:149–154.
  • Board, P. G., Baker, R. T., Chelvanayagam, G., Jermiin, L. S. (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328:929–935.
  • Board, P. G., Taylor, M. C., Coggan, M., Parker, M. W., Lantum, H. B., Anders, M. W. (2003). Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochem J 374:731–737.
  • Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S., Schulte, G. K., et al. (2000). Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem 275:24798–24806.
  • Buffinton, G. D., Ollinger, K., Brunmark, A., Cadenas, E. (1989). DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates. Biochem J 257:561–571.
  • Caccuri, A. M., Antonini, G., Allocati, N., Di Ilio, C., De Maria, F., Innocenti, F., et al. (2002). GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme. J Biol Chem 277:18777–18784.
  • Cai, M., Xun, L. (2002). Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680.
  • Commandeur, J. N., Stijntjes, G. J., Vermeulen, N. P. (1995). Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Role in bioactivation and detoxication mechanisms of xenobiotics. Pharmacol Rev 47:271–330.
  • Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., Palsson, B. O. (2004). Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96.
  • Crosby, D. G. (1981). Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1052–1080.
  • Dai, M., Rogers, J. B., Warner, J. R., Copley, S.D. (2003). A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 185:302–310.
  • Dixon, D. P., Davis, B. G., Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869.
  • Emanuelsson, O., Nielsen, H., von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Prot Sci 8:978–984.
  • Frova, C. (2003). The plant glutathione transferase gene family: genomic structure, functions, expression, and evolution. Physiol Plant 119:469–479.
  • Garcera, A., Barreto, L., Piedrafita, L., Tamarit, J., Herrero, E. (2006). Saccharomyces cerevisiae cells have three omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 398:187–196.
  • Hayes, J. D., Flanagan, J. U., Jowsey, I. R. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.
  • Hill, B. A., Kleiner, H. E., Ryan, E. A., Dulik, D. M., Monks, T. J., Lau, S. S. (1993). Identification of multi-S-substituted conjugates of hydroquinone by HPLC-coulometric electrode array analysis and mass spectroscopy. Chem Res Toxicol 6:459–469.
  • Holmgren, A., Aslund, F. (1995). Glutaredoxin. Meth Enzymol 252:283–292.
  • Huang, Y., Xun, R., Chen, G., Xun, L. (2008). Maintenance role of a glutathionyl-hydroquinone lyase (PcpF) in pentachlorophenol degradation by Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 190:7595–7600.
  • Inoue, H., Nishida, M., Takahashi, K. (2000). Effects of Cys10 mutation to Ala in glutathione transferase from Escherichia coli. J Organomet Chem 611:593–595.
  • Kałuzna, A., Bartosz, G. (1997). Transport of glutathione S-conjugates in Escherichia coli. Biochem Mol Biol Int 43:161–171.
  • Lau, S. S., Hill, B. A., Highet, R. J., Monks, T. J. (1988). Sequential oxidation and glutathione addition to 1,4-benzoquinone: correlation of toxicity with increased glutathione substitution. Mol Pharmacol 34:829–836.
  • Li, J., Xia, Z., Ding, J. (2005). Thioredoxin-like domain of human kappa class glutathione transferase reveals sequence homology and structure similarity to the theta class enzyme. Prot Sci 14:2361–2369.
  • Louie, T. M., Webster, C. M., Xun, L. (2002). Genetic and biochemical characterization of a novel 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500.
  • Lussier, M., White, A. M., Sheraton, J., di Paolo, T., Treadwell, J., Southard, S. B., et al. (1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147:435–450.
  • Lustberg, T. J., Schulman, J. D., Seegmiller, J. E. (1971). The preparation and identification of various adducts of oxidized homogentisic acid and the development of a new sensitive colorimetric assay for homogentisic acid. Clin Chim Acta 35:325–333.
  • Marco, A., Cuesta, A., Pedrola, L., Palau, F., Marín, I. (2004). Evolutionary and structural analyses of GDAP1, involved in Charcot-Marie-Tooth disease, characterize a novel class of glutathione transferase-related genes. Mol Biol Evol 21:176–187.
  • Masai, E., Ichimura, A., Sato, Y., Miyauchi, K., Katayama, Y., Fukuda, M. (2003). Roles of the enantioselective glutathione S-transferases in cleavage of β-aryl ether. J Bacteriol 185:1768–1775.
  • McCarthy, D. L., Navarrete, S., Willett, W. S., Babbitt, P. C., Copley, S. D. (1996). Exploration of the relationship between tetrachlorohydroquinone dehalogenase and the glutathione S-transferase superfamily. Biochem 35:14634–14642.
  • Miyauchi, K., Suh, S. K., Nagata, Y., Takagi, M. (1998). Cloning and sequencing of a 2,5-dichlorohydroquinone reductive dehalogenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 180:1354–1359.
  • Nerland, D. E., Pierce, W. M. Jr. (1990). Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone. Drug Metab Dispos 18:958–961.
  • Nickerson, W. J., Falcone, G., Strauss, G. (1963). Studies on quinone-thioethers. I. Mechanism of formation and properties of thiodione. Biochemistry 2:537–543.
  • Niemann, A., Ruegg, M., La Padula, V., Schenone, A., Suter, U. (2005). Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol 170:1067–1078.
  • Noguera, V., Walker, O., Rouhier, N., Jacquot, J. P., Krimm, I., Lancelin, J. M. (2005). NMR reveals a novel glutaredoxin-glutaredoxin interaction interface. J Mol Biol 353:629–641.
  • Orser, C. S., Dutton, J., Lange, C., Jablonski, P., Xun, L., Hargis, M. (1993). Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination. J. Bacteriol 175:2640–2644.
  • Pérez-Pantoja, D., De la Iglesia, R., Pieper, D. H., González, B. (2008). Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32:736–794.
  • Rea, P. A., Li, Z. S., Lu, Y. P., Drozdowicz, Y. M., Martinoia, E. (1998). From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760.
  • Rieble, S., Joshi, D. K., Gold, M. H. (1994). Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. J Bacteriol 176:4838–4844.
  • Romanova, A. S., Patudin, A. V., Ban’kovskii, A. I. (1977). Quinones of higher plants as possible therapeutic agents. Pharm Chem J 11:927–937.
  • Roof, B. S., Turner, J. C. (1955). Protein interactions of gentisic acid and certain of its oxidation products. J Clin Invest 34:1647–1652.
  • Ross, D., Thor, H., Orrenius, S., Moldeus, P. (1985). Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione. Chem Biol Interact 55:177–184.
  • Rossjohn, J., Polekhina, G., Feil, S. C., Allocati, N., Masulli, M., Di Ilio, C., et al. (1998). A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure 6:721–734.
  • Saber, D. L., Crawford, R. L. (1985). Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518.
  • Schenzle, A., Lenke, H., Spain, J. C., Knackmuss, H. J. (1999 ). 3-hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. J Bacteriol 181:1444–1450.
  • Schröder, P., Scheer, C. E., Diekmann, F., Stampfl, A. (2007). How plants cope with foreign compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare). Environ Sci Pollut Res Int 14:114–122.
  • Sheehan, D., Meade, G., Foley, V. M., Dowd, C. A. (2001). Structure, function, and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16.
  • Shield, A. J., Murray, T. P., Board, P. G. (2006). Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase. Biochem Biophys Res Commun 347:859–866.
  • Song, Y., Wagner, B. A., Witmerl, J. R., Lehmler, H. J., Buettner, G. R. (2009). Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones. Proc Natl Acad Sci U S A 106:9725–9730.
  • Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., et al. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41.
  • Tocheva, E. I., Fortin, P. D., Eltis, L. D., Murphy, M. E. P. (2006). Ternary complexes of BphK, a bacterial GST that reductively dechlorinates PCB metabolites. J Biol Chem 281:30933–30940.
  • Whitbread, A. K., Masoumi, A., Tetlow, N., Schmuck, E., Coggan, M., Board, P. G. (2005). Characterization of the omega class of glutathione transferases. Meth Enzymol 401:78–99.
  • Xun, L., Orser, C. S. (1991). Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453.
  • Xun, L., Topp, E., Orser, C. S. (1992). Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007.
  • Xun, L., Bohuslavek, J., Cai, M. (1999). Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophy Res Comm 266:322–325.
  • Xun, L., Belchik, S., Xun, R., Huang, Y., Zhou, H., Sanchez, E., et al. (2010). S-glutathionyl-(chloro)hydroquinone reductases: a novel class of glutathione transferases. Biochem J 428:419–427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.