530
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation

&
Pages 292-299 | Received 27 Oct 2010, Accepted 21 Dec 2010, Published online: 23 Mar 2011

References

  • Addya, S., Mullick, J., Fang, J. K., Avadhani, N. G. (1994). Purification and characterization of a hepatic mitochondrial glutathione S-transferase exhibiting immunochemical relationship to the alpha-class of cytosolic isoenzymes.Arch Biochem Biophys 310:82–88.
  • Alcalá, S., Klee, M., Fernández, J., Fleischer, A., Pimentel-Muiños, F.X. (2008). A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene 27:44–54.
  • Alin, P., Danielson, U. H., Mannervik, B. (1985). 4-hydroxyalk-2-enals are substrates for glutathione transferase. FEBS Lett 179:267–270.
  • Andersson, C.,Soderstrom, M., Mnnervik, B. (1988). Activation and inhibition of microsomal glutathione transferase from mouse liver.Biochem J249:819–823.
  • Andersson, C., Mosialou, E., Weinander, R., Morgenstern, R. (1994). Enzymology of microsomal glutathione S-transferase. Adv Pharmacol 27:19–35.
  • Aniya, Y., Anders, M. W. (1989). Regulation of rat liver microsomal glutathione S-transferase activity by thiol/disulfide exchange. Arch Biochem Biophys 270:330–334.
  • Aniya, Y., Anders, M. W. (1992a). Activation of rat liver microsomal glutathione S-transferase by hydrogen peroxide: role for protein-dimer formation. Arch Biochem Biophys 296:611–616.
  • Aniya, Y., Anders, M. W. (1992b). Activation of hepatic microsomal glutathine S-transferase by hydrogenperoxide and diamide. In: Yagi, K., Kondo, M., Niki, E., Yoshikawa, T. (Eds.), Oxygen radicals ( pp. 737–740). Amsterdam: Elsevier.
  • Aniya, Y., Naito, A., (1993). Oxidative stress-induced activation of microsomal glutathione S-transferase in isolated rat liver. Biochem Pharmacol 45:37–42.
  • Aniya, Y., Shimoji, M., Naito, A. (1993). Increase in liver microsomal glutathione S-transferase activity by phenobarbital treatment of rats. Posible involvement of oxidative activation via cytochrome P450. Biochem Pharmacol 46:1741–1747.
  • Archer, S. L., Gomberg-Maitland, M., Maitland, M. L., Rich, S., Garcia, J. G., Weir, E. K. (2008). Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570–H578
  • Armstrong, J. S. (2006). The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234.
  • Baines, C. P. (2009). The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 46:850–857.
  • Baines, C. P., Kaiser, R. A., Sheiko, T., Creigen, W. J., Molkentin, J. D. (2007). Voltage dependent anion channels are dispensable for mitochondrial dependent cell death. Nat Cell Biol 9:550–555.
  • Basso, E., Petronilli, V., Forte, M. A., Bernardi, P. (2008). Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 283:26307–26311.
  • Broekemeier, K. M., Dempsey, M. E., Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830.
  • Brookes, P.S., Morse, K., Ray, D., Tompkins, A., Young, S.M., Hilchey, S., et al. (2007). The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid and its derivatives elicit human lymphoid cell apoptosis through a novel pathway involving the unregulated mitochondrial permeability transition pore. Cancer Res 67:1793–1802.
  • Busenlehner, L. S., Alander, J., Jegerscohld, C., Holm, P. J., Bhakat, P., Hebert, H.,et al. (2007). Location of substrate binding sites within the integral membrane protein microsomal glutathine transferase-1. Biochemistry 46:2812–2822.
  • Busenlehner, L. S., Codreanu, S. G., Holm, P. J., Bhakat, P., Hebert, H., Morgenstern, R., et al. (2004). Stress sensor triggers conformational response of the integral membrane protein MGST1. Biochemistry 43:11145–11152.
  • Cheng, J. Z., Singhal, S. S., Sharma, A., Saini, M., Yang, Y., Awasthi, S., et al. (2001). Transfection of mGSTA4 in HL-60 cells protects against 4-hydroxynonenal-induced apoptosis by inhibiting JNK-mediated signaling. Arch Biochem Biophys 392:197–207.
  • Cheng, J. Z., Singhal, S. S.,Saini, M.,Singhal, J., Piper, J.T.,Van Kuijk, F. J., et al. (1999). Effect of mGSTA4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 372:29–36.
  • Chiara, F., Castellaro, D., Marin, O., Petronilli, V., Brusilow, W.S., Juhaszova, M., et al. (2008). Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS ONE 3:e1852.
  • Circu, M. L., Aw, T. Y. (2010). Reactive oxygen species, cellular redox, and apoptosis. Free Radic Biol Med 48:749–762.
  • Clarke, S. J., McStay, G. P., Halestrap, A. P. (2002). Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem277:34793–34799.
  • Crompton, M., Costi, A. (1988). Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate, and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501.
  • Cruz, T. S., Faria, P. A., Santana, D. P., Ferreira, J. C., Oliveira, V., Nascimento, O. R., et al. (2010). On the mechanisms of phenothiazine-induced mitochondrial permeability transition: thiol oxidation, strict Ca2+ dependence, and cyt c release. Biochem Pharmacol 80:1284–1295.
  • Curtis, J. M, Grimsrud, P. A, Wright, W. S., Xu, X., Foncea, R. E., Graham, D.W., et al., (2010). Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 59:1132–1142.
  • Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J Biol Chem 265:19955–19960.
  • Feng, Z., Hu, W., Tang, M. S. (2004). Trans-4-hydroxy-2-nonenal inhibits nucleotide excision repair in human cells: a possible mechanism for lipid peroxidation-induced carcinogenesis. Proc Natl Acad Sci USA 101:8598–8602.
  • Gardner, J. L., Gallagher, E. P. (2001). Development of a peptide antibody against human glutathione transferase A4 (hGSTA4-4) reveals preferential localization in hepatic mitochondria. Arch Biochem Biophys 390:19–27.
  • Gallagher, E. P., Gardner, J. L., Barber, D. S. (2006). Several glutathione S-transferase isozymes that protect against oxidative injury are expressed in human liver mitochondria. Biochem Pharmacol 71:1619–1628.
  • Genova, M. L., Pich, M. M., Bernacchia, A., Bianchi, C., Biondi, A., Bovina, C., et al. (2004). The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann N Y Acad Sci 1011:86–100.
  • Giorgio, V., Soriano, M., Basso, E., Bisetto, E., Lippe, G., Forte, M., et al. (2010). Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118.
  • Halestrap, A. P. (2009). What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831.
  • Halestrap, A. P., Connern, C. P., Griffiths, E. J., Kerr, P. M. (1997). Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischemia/reperfusion injury. Mol Cell Biochem 174:167–172.
  • Halliwell, B., Whiteman, M. (2004). Measuring RS and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255.
  • Halliwell, B., Gutteridge, J.M.C. ( Eds.). (2007). Free radicals in biology and medicine. New York: Oxford University Press.
  • Harris J. M., Meyer, D. J., Coles, B., Ketterer, B. (1991). A novel glutathione transferase (13–13) isolated from the matrix of rat liver mitochondria having structural similarity to class theta enzymes.Biochem J 278:137–141.
  • Hayes, J. D., Flanagan, J. U., Jowsey, I. R. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.
  • He, L., Lemasters, J.J. (2002). Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7.
  • Holm, P. J., Bhakat, P., Jegerschöld, C., Gyobu, N., Mitsuoka, K., Fujiyoshi, Y., et al. (2006). Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol 360:934–945.
  • Hossain, Q. S., Ulziikhishig, E., Lee, K. K., Yamamoto, H., Aniya, Y. (2009). Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores. Toxicol Appl Pharmacol 235:77–85.
  • Imaizumi, N., Miyagi, S., Aniya, Y. (2006). Reactive nitrogen species derived activation of rat liver microsomal glutathione S-transferase. Life Sci 78:2998–3006.
  • Imaizumi, N., Katayama, R., Aniya, Y. (2010). Mitochondrial membrane bound-glutathione transferase can form mitochondrial permeability transition pores. Drug Metab Rev 42(S1):P–388.
  • Jakobsson, P. J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., Persson, B. (1999). Common structural feature of MAPEG—a wide spread superfamily of membrane-associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Prot Sci 8:689–692.
  • Javadov, S., Kamazym, M. (2007). Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22.
  • Johansson, K., Järvliden, J., Gogvadze, V., Morgenstern, R. (2010). Multiple roles of microsomal glutathione transferase 1 in cellular protection: a mechanistic study. Free Radic Biol Med 49:1638–1645.
  • Jowsey, I. R., Thomson, R. E., Orton, T. C., Elcombe, C. R., Hayes, J. D. (2003). Biochemical and genetic characterization of a murine class kappa glutathione S-transferase. Biochem J 373:559–569.
  • Kelner, M.J., Bagnell, R.D., Morgenstern, R. (2004). Structure organization of the murine nicrosomal glutathione S-transferase gene (MGST1) from the 129/SvJ strain: identification of the promoter region and comprehensive examination of tissue expression. Biochem Biophys Acta 1678:163–169
  • Kinoshita, S., Inoue,Y., Nakama, S., Ichiba, T. M, Aniya, Y.(2007). Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine 14:755–762.
  • Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sllgh, J. E., Cal, J., Johmes, D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465.
  • Kroemer, G., Galluzzi, L., Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163.
  • Lee, K. K., Shimoji, M., Hossain, Q. S., Sunakawa, H., Aniya, Y. (2008). Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxicol Appl Pharmacol 232:109–118.
  • Lemasters, J. J., Theruvath, T.P., Zhong, Z., Nieminen, A.-L. (2009). Mitochondrial calcium and the permeability transition in cell death. Biochem Biophys Acta 1787:1395–1401.
  • Leung, A. W., Varanyuwatana, P., Halestrap, A. P. (2008). The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323.
  • Li, W., James, M. O., McKenzie, S. C., Calcutt, N. A., Liu, C., Stacpoole, P. W. (2010). Mitochondrion as a novel site of dichloroacetate biotransformation by glutathione transferase zeta 1. J Pharmacol Exp Ther 336:87–94.
  • McLellan, L.I., Wolf, C.R., Hayes, J.D. (1989). Human microsomal glutathione S-transferase. Biochem J 258:87–93.
  • McStay, G. P., Clarke, S. J., Halestrap, A. P. (2002). Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548.
  • Michelakis, E. D., Sutendra, G., Dromparis, P., Webster, L., Haromy, A., Niven, E., et al. (2010). Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31–34.
  • Morel, F., Rauch, C., Petit, E., Piton, A., Theret, N., Coles, B., et al. (2004). Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization.J Biol Chem 279:16246–16253.
  • Morgenstern, R., DePierre, J. W., Ernster, L. (1979). Activation of microsomal glutathione S-transferase activity by sulfhydryl reagents. Biochem Biophys Res Commun 87:657–663.
  • Morgenstern, R., Guthenberg, C., DePierre, J. W.(1982). Microsomal glutathione transferase. Purification, initial characterization, and demonstration that it is not identical to the cytosolic glutathione S-transferase A, B, and C. Eur J Biochem 128:243–248.
  • Morgenstern, R., DePierre, J. W. (1983). Microsomal glutathione transferase. Purification in unactivated form and further characterization of the activation process, substrate specificity, and amino acid composition. Eur J Biochem134:591–597.
  • Morgenstern, R., DePierre, J. W., Jornvall, H. (1985). Microsomal glutathione transferase. Primary structure. J Biol Chem 260:13976–13983.
  • Morgenstern, R., Lundqvist, G., Andersson, G., Balk, L., DePierre, J. W. (1984). The distribution of microsomal glutathione transferase among different organelles, different organs, and different organism. Biochem Pharmacol 33:3609–3614.
  • Morgenstern, R., Wallin, H., DePierre, J. W. (1987). Glutathione S-transferases and carcinogenesis. London, New York and Philadelphia:Taylor and Francis.
  • Morgenstern, R., Lundqvist, G., Hancock, V., DePierre, J. W. (1988). Studies on the activity and activation of rat liver microsomal glutathione transferase, in particular with a substrate analogue series. J Biol Chem 263:6671–6675.
  • Mosialou, E., Ekstrom, G., Adang, A. E., Morgenstern, R. (1993). Evidence that rat liver microsomal glutathione transferase is responsible for glutathione-dependent protection against lipid peroxidation. Biochem Pharmacol 45:1645–1651.
  • Myagmar, B.-E., Shinno, E., Ichiba, T., Aniya, Y. (2004). Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats. Phytomedicine 11:416–423.
  • Nishino, H., Ito, A. (1990). Purification and properties of glutathione S-transferase from outer mitochondrial membrane of rat liver. Biochem Int 20:1059–1066.
  • Oakley, A. J. (2005). Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723.
  • Orrenius, S., Gogvadze, V., Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–183.
  • Pemble, S. E, Wardle, A. F., Taylor, J. B. (1996). Glutathione S-transferase class kappa: characterization by the cloning of rat mitochondrial GST and identification of a human homologue. Biochem J 319:749–754.
  • Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269:16638–16642.
  • Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389:300–305.
  • Queiroga, C.S.F., Almeida, A.S., Martel, C., Brenner, C., Alves, P.M., Vieira, H.L.A.(2010). Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilisation and apoptosis. J Biol Chem 285:17077–17088.
  • Raza, H., Awasthi, N. G. (2007). Mitochondrial glutathione S-transeferase pool in health and disease. In: Awasthi, Y.C.( Ed.), Toxicology of glutathione transferases ( pp. 277–291). New York:Taylor & Francis.
  • Raza, H., John, A. (2006). 4-hydroxynonenal induces mitochondrial oxidative stress, apoptosis, and expression of glutathione S-transferase A4-4 and cytochrome P450 2E1 in PC12 cells. Toxicol Appl Pharmacol 216:309–318.
  • Raza, H., Prabu, S. K., Robin, M. A., Avadhani, N. G. (2004). Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4-4 in streptozotocin-induced diabetic rats: tissue-specific variations and roles in oxidative stress. Diabetes53:185–194.
  • Raza, H., Robin, M. A., Fang, J. K., Avadhani, N.G. (2002). Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45–55.
  • Rinaldi, R., Eliasson, E., Swedmark, S., Morgenstern, R. (2002). Reactive intermediates and the dynamics of glutathione transferases. Drug Metab Disp 30:1053–1058.
  • Sies, H. (1991). Oxidative stress II. Oxidants and antioxidants. London: Academic Press.
  • Sakagami, H., Satoh, K., Hatano, T., Yoshida, T., Okuda, T. (1997). Possible role of radical intensity and oxidation potential for gallic acid-induced apoptosis. Anticancer Res 17:377–380.
  • Sharma, R., Ansari, G.A.S., Awasthi, Y.C. (2007). Physiological substrates of glutathione S-transferases. In: Awasthi, Y.C.( Ed.), Toxicology of glutathione transferases ( pp.179–203).New York: Taylor & Francis.
  • Shimoji, M., Aniya, Y., Morgenstern, R. (2007). Activation of microsomal glutathione transferase 1. In: Awasthi, Y.C.( Ed.), Toxicology of glutathione transferases ( pp. 293–319). New York:Taylor & Francis.
  • Shinno, E., Shimoji, M., Imaizumi, N., Kinoshita, S., Sunakawa, H., Aniya, Y. (2005). Activation of rat liver microsomal glutathione S-transferase by gallic acid. Life Sci 19:99–106.
  • Stacpoole, P. W., Henderson, G. N., Yan, Z., Cornett, R., James, M. O. (1998). Pharmacokinetics, metabolism, and toxicology of dichloroacetate. Drug Metab Rev 30:499–539.
  • Stacpoole, P. W., Kurtz, T. L., Han, Z., Langaee, T. (2008). Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev60:1478–1487.
  • Thomson, R. E., Bigley, A. L., Foster, J. R., Jowsey, I. R., Elcombe, C. R., Orton, T. C., et al. (2004). Tissue-specific expression and subcellular distribution of murine glutathione S-transferase class kappa. J Histochem Cytochem 52:653–662.
  • Tsujimoto, Y., Shimizu, S. (2007). Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840.
  • Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344.
  • Uchida, K., Shiraishi, M., Naito, Y., Torii, Y., Nakamura, Y., Osawa, T. (1999). Activation of stress signaling pathways by the end product of lipid peroxidation: 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242.
  • Ulziikhishig, E., Lee, K. K., Hossain, Q. S., Higa, Y., Imaizumi, N., Aniya, Y. (2010). Inhibition of mitochondrial membrane bound-glutathione transferase by mitochondrial permeability transition inhibitors including cyclosporin A. Life Sci 86:726–732.
  • Verrier, F., Deniaud, A., Lebras, M., Métivier, D., Kroemer, G., Mignotte, B., et al. (2004). Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 23:8049–8064.
  • Wang, X. (2001). The expanding role of mitochondria in apoptosis.Genes Dev 15:2922–2933.
  • Weis, M., Morgenstern, R., Cotgreave, I.A., Nelson, S. D., Moldeus, P. (1992). N-acetyl-p-benzoquinone imine-induced protein thiol modification in isolated rat hepatocytes. Biochem Pharmcol 43:1493–1505.
  • Yang, Y., Awasthi, Y. C. (2007). Glutathione S-transferases as modulators of signal transduction. In: Awasthi, Y.C. ( Ed.), Toxicology of glutathione transferases ( pp. 293–319). New York:Taylor & Francis.
  • Yonamine, M., Aniya, Y., Yokomakura, T., Koyama, T.,Nagamine, T., Nakanishi, H. (1996). Acetaminophen-derived activation of liver microsomal glutathione S-transferase of rats. Jpn J Pharmacol 72:175–181.
  • Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P. X., Kroemer, G. (1997). Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 29:185–193.
  • Zimniak, P. (2007). Substrates and reaction mechanisms of glutathione transferases. In: Awasthi, Y.C.( Ed.)), Toxicology of glutathione transferases ( pp. 293–319). New York:Taylor & Francis.
  • Zoratti, M., Szabo, I., Marchi, U. D. (2005). Mitochondrial permeability transition: how many doors to the house? Biochim Biophys Acta 1706:40–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.