537
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Knockout and transgenic mice in glutathione transferase research

&
Pages 152-164 | Received 31 Jan 2011, Accepted 10 Feb 2011, Published online: 22 Mar 2011

References

  • Adler, V., Yin, Z., et al. (1999). Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334.
  • Alexis, N. E., Zhou, H., et al. (2009). The glutathione-S-transferase Mu 1 null genotype modulates ozone-induced airway inflammation in human subjects.” J Allergy Clin Immunol 124:1222–1228, e1225.
  • Ali-Osman, F., Akande, O., et al. (1997). Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272:10004–10012.
  • Ali-Osman, F., Brunner, J. M., et al. (1997). Prognostic significance of glutathione S-transferase pi expression and subcellular localization in human gliomas. Clin Cancer Res 3(12 Pt 1):2253–2261.
  • Anttila, S., Hirvonen, A., et al. (1993). Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res 53:5643–5648.
  • Arakawa, S., Maejima, T., et al. (2010). Methemoglobinemia induced by 1,2-dichloro-4-nitrobenzene in mice with a disrupted glutathione S-transferase Mu 1 gene. Drug Metab Dispos 38:1545–1552.
  • Arning, L., Jagiello, P., et al. (2004). Glutathione S-transferase omega 1 variation does not influence age at onset of Huntington’s disease. BMC Med Genet 5:7.
  • Ayyadevara, S., Engle, M. R., et al. (2005). Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging Cell 4:257–271.
  • Bammler, T. K., Smith, C. A., et al. (1994). Isolation and characterization of two mouse pi-class glutathione S-transferase genes. Biochem J 298(Pt 2):385–390.
  • Bernardini, S., Bellincampi, L., et al. (2002). Role of GST P1-1 in mediating the effect of etoposide on human neuroblastoma cell line Sh-Sy5y. J Cell Biochem 86:340–347.
  • Bernardini, S., Bernassola, F., et al. (2000). Modulation of GST P1-1 activity by polymerization during apoptosis. J Cell Biochem 77:645–653.
  • Bhattacharjee, S., Rana, T., et al. (2007). Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev 8:578–582.
  • Black, S. M., Beggs, J. D., et al. (1990). Expression of human glutathione S-transferases in Saccharomyces cerevisiae confers resistance to the anticancer drugs adriamycin and chlorambucil. Biochem J 268:309–315.
  • Black, S. M., Ellard, S., et al. (1989). The expression of cytochrome P450IIB1 in Saccharomyces cerevisiae results in an increased mutation frequency when exposed to cyclophosphamide. Carcinogenesis 10:2139–2143.
  • Black, S. M., Wolf, C. R. (1991). The role of glutathione-dependent enzymes in drug resistance. Pharmacol Ther 51:139–154.
  • Blackburn, A. C., Matthaei, K. I., et al. (2006). Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways. Mol Pharmacol 69:650–657.
  • Bligh, H. F., Wolf, C. R., et al. (1992). Production of cytochrome P450 reductase yeast-rat hybrid proteins in Saccharomyces cerevisiae. Gene 110:33–39.
  • Board, P. G. (1998). Identification of cDNAs encoding two human alpha class glutathione transferases (GSTA3 and GSTA4) and the heterologous expression of GSTA4-4. Biochem J 330(Pt 2):827–831.
  • Board, P. G. (2007). The use of glutathione transferase-knockout mice as pharmacological and toxicological models. Exp Opin Drug Metab Toxicol 3:421–433.
  • Board, P. G., Anders, M. W. (2005). Human glutathione transferase zeta. Meth Enzymol 401:61–77.
  • Board, P. G., Baker, R. T., et al. (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328(Pt 3):929–935.
  • Board, P. G., Chelvanayagam, G., et al. (2001). Identification of novel glutathione transferases and polymorphic variants by expressed sequence tag database analysis. Drug Metab Dispos 29(4 Pt 2):544–547.
  • Board, P. G., Coggan, M., et al. (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 275:24798–24806.
  • Board, P. G., Webb, G. C., et al. (1989). Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13–14. Ann Hum Genet 53(Pt 3):205–213.
  • Bolt, H. M., Thier, R. (2006). Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 7:613–628.
  • Bouteille, B., Oukem, O., et al. (2003). Treatment perspectives for human African trypanosomiasis. Fundam Clin Pharmacol 17:171–181.
  • Buyske, S., Williams, T. A., et al. (2006). Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet 7:8.
  • Carroll, W. D., Lenney, W., et al. (2005). Maternal glutathione S-transferase GSTP1 genotype is a specific predictor of phenotype in children with asthma. Pediatr Allergy Immunol 16:32–39.
  • Chowdhury, U. K., Zakharyan, R. A., et al. (2006). Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216:446–457.
  • Coggan, M., Flanagan, J. U., et al. (2002). Identification and characterization of GSTT3, a third murine theta class glutathione transferase. Biochem J 366(Pt 1):323–332.
  • Coles, B., Wilson, I., et al. (1988). The spontaneous and enzymatic reaction of N-acetyl-p-benzoquinonimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys 264:253–260.
  • Conklin, D. J., Haberzettl, P., et al. (2009a). Increased sensitivity of glutathione S-transferase P-null mice to cyclophosphamide-induced urinary bladder toxicity. J Pharmacol Exp Ther 331:456–469.
  • Conklin, D. J., Haberzettl, P., et al. (2009b). Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke. Am J Physiol Heart Circ Physiol 296:H1586–H1597
  • Cui, X., Ji, D., et al. (2011). Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67.
  • Curtis, J. M., Grimsrud, P. A., et al. (2010). Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 59:1132–1142.
  • Dubinina, E. E., Dadali, V. A. (2010). Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Mosc) 75:1069–1087.
  • Dwivedi, S., Sharma, R., et al. (2006). The course of CCl4 induced hepatotoxicity is altered in mGSTA4-4 null (–/–) mice. Toxicology 218:58–66.
  • Elhasid, R., Krivoy, N., et al. (2010). Glutathione S-transferase T1-null seems to be associated with graft failure in hematopoietic SCT. Bone Marrow Transpl 45:1728–1731.
  • Elsby, R., Kitteringham, N. R., et al. (2003). Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase pi. J Biol Chem 278:22243–22249.
  • Engle, M. R., Singh, S. P., et al. (2004). Physiological role of mGSTA4-4, a glutathione S-transferase metabolizing 4-hydroxynonenal: generation and analysis of mGsta4 null mouse. Toxicol Appl Pharmacol 194:296–308.
  • Fernandez-Canon, J. M., Baetscher, M. W., et al. (2002). Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 22:4943–4951.
  • Fernandez-Canon, J. M., Penalva, M. A. (1998). Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem 273:329–337.
  • Filonzi, L., Magnani, C., et al. (2010). Evidence that polymorphic deletion of the glutathione S-transferase gene, GSTM1, is associated with esophageal atresia. Birth Defects Res A Clin Mol Teratol 88:743–747.
  • Fryer, A. A., Bianco, A., et al. (2000). Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am J Respir Crit Care Med 161:1437–1442.
  • Fujimoto, K., Arakawa, S., et al. (2006). Characterization of phenotypes in Gstm1-null mice by cytosolic and in vivo metabolic studies using 1,2-dichloro-4-nitrobenzene. Drug Metab Dispos 34:1495–1501.
  • Fujimoto, K., Arakawa, S., et al. (2007). Generation and functional characterization of mice with a disrupted glutathione S-transferase, theta 1 gene. Drug Metab Dispos 35:2196–2202.
  • Gate, L., Majumdar, R. S., et al. (2004). Increased myeloproliferation in glutathione S-transferase pi-deficient mice is associated with a deregulation of JNK and Janus kinase/STAT pathways. J Biol Chem 279:8608–8616.
  • Gate, L., Majumdar, R. S., et al. (2005). Influence of glutathione S-transferase pi and p53 expression on tumor frequency and spectrum in mice. Int J Cancer 113:29–35.
  • Gawronska-Szklarz, B., Lubinski, J., et al. (1999). Polymorphism of GSTM1 gene in patients with colorectal cancer and colonic polyps. Exp Toxicol Pathol 51(4–5):321–325.
  • Harries, L. W., Stubbins, M. J., et al. (1997). Identification of genetic polymorphisms at the glutathione S-transferase pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18:641–644.
  • Hayes, J. D., Flanagan, J. U., et al. (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.
  • Hayes, J. D., Pulford, D. J. (1995). The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600.
  • Hayes, P. C., Harrison, D. J., et al. (1989). Cytosolic and microsomal glutathione S-transferase isoenzymes in normal human liver and intestinal epithelium. Gut 30:854–859.
  • Henderson, C. J., McLaren, A. W., et al. (1998a). Pi-class glutathione S-transferase: regulation and function. Chemico Biol Interact 111–112:69–82.
  • Henderson, C. J., Otto, D. M., et al. (2003). Knockout mice in xenobiotic metabolism. Drug Metab Rev 35:385–392.
  • Henderson, C. J., Ritchie, K. J., et al. (2011). Increased genetically-initiated skin adenomas in mice lacking glutathione S-transferase P. Submitted.
  • Henderson, C. J., Scheer, N., et al. (2008). The use of transgenic animals to study drug metabolism. In Pearson, P. G., Wienkers, L. C., (Eds.), Handbook of drug metabolism (2nd ed., pp. 637–658). New York: Informa Healthcare.
  • Henderson, C. J., Smith, A. G., et al. (1998b). Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci U S A 95:5275–5280.
  • Henderson, C. J., Wolf, C. R. (2003). Transgenic analysis of human drug-metabolizing enzymes: preclinical drug development and toxicology. Mol Interv 3:331–343.
  • Henderson, C. J., Wolf, C. R. (2005). Disruption of the glutathione transferase pi class genes. Meth Enzymol 401:116–135.
  • Henderson, C. J., Wolf, C. R., et al. (2000). Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase pi. Proc Natl Acad Sci U S A 97:12741–12745.
  • Higgins, L. G., Cavin, C., et al. (2008). Induction of cancer chemopreventive enzymes by coffee is mediated by transcription factor Nrf2. Evidence that the coffee-specific diterpenes cafestol and kahweol confer protection against acrolein. Toxicol Appl Pharmacol 226:328–337.
  • Huang, R. S., Chen, P., et al. (2009). Population-specific GSTM1 copy number variation. Hum Mol Genet 18:366–372.
  • Ilic, Z., Crawford, D., et al. (2010). Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. Toxicol Appl Pharmacol 242:241–246.
  • Ishisaki, A., Hayashi, H., et al. (2001). Glutathione S-transferase pi is a dopamine-inducible suppressor of dopamine-induced apoptosis in PC12 cells. J Neurochem 77:1362–1371.
  • Jiang, X. L., Gonzalez, F. J., et al. (2011). Drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. Drug Metab Rev 43:27–40.
  • Josephy, P. D. (2010). Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2010:876–940.
  • Jowett, T., Wajidi, M. F., et al. (1991). Mammalian genes expressed in Drosophila: a transgenic model for the study of mechanisms of chemical mutagenesis and metabolism. EMBO J 10:1075–1081.
  • Kanaoka, Y., Urade, Y. (2003). Hematopoietic prostaglandin D synthase. Prostaglandins Leukot Essent Fatty Acids 69(2–3):163–167.
  • Kitteringham, N. R., Powell, H., et al. (2003). Protein expression profiling of glutathione S-transferase pi null mice as a strategy to identify potential markers of resistance to paracetamol-induced toxicity in the liver. Proteomics 3:191–207.
  • Kolsch, H., Linnebank, M., et al. (2004). Polymorphisms in glutathione S-transferase omega-1 and AD, vascular dementia, and stroke. Neurology 63:2255–2260.
  • Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology 198(1–3):239–248.
  • Landi, S. (2000). Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 463:247–283.
  • Lantum, H. B., Baggs, R. B., et al. (2002). Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues. Drug Metab Dispos 30:616–625.
  • Lee, S. S., Buters, J. T., et al. (1996). Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 271:12063–12067.
  • Li, Y. J., Oliveira, S. A., et al. (2003). Glutathione S-transferase omega-1 modifies age-at-onset of Alzheimer disease and Parkinson disease. Hum Mol Genet 12:3259–3267.
  • Li, Y. J., Scott, W. K., et al. (2006). Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiol Aging 27:1087–1093.
  • Lim, C. E., Matthaei, K. I., et al. (2004). Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. Am J Pathol 165:679–693.
  • Liu, X. P., Goldring, C. E., et al. (2009). Extract of Ginkgo biloba induces glutathione-S-transferase subunit-P1 in vitro. Phytomedicine 16:451–455.
  • Lo, H. W., Ali-Osman, F. (2007). Genetic polymorphism and function of glutathione S-transferases in tumor drug resistance. Curr Opin Pharmacol 7:367–374.
  • Lo, H. W., Stephenson, L., et al. (2008). Identification and functional characterization of the human glutathione S-transferase P1 gene as a novel transcriptional target of the p53 tumor suppressor gene. Mol Cancer Res 6:843–850.
  • Manevich, Y., Feinstein, S. I., et al. (2004). Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A 101:3780–3785.
  • Mannervik, B., Board, P. G., et al. (2005). Nomenclature for mammalian soluble glutathione transferases. Meth Enzymol 401:1–8.
  • Mapp, C. E., Fryer, A. A., et al. (2002). Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates. J Allergy Clin Immunol 109:867–872.
  • McLellan, L. I., Wolf, C. R. (1999). Glutathione and glutathione-dependent enzymes in cancer drug resistance. Drug Resist Updat 2:153–164.
  • Moffat, G. J., McLaren, A. W., et al. (1994). Involvement of Jun and Fos proteins in regulating transcriptional activation of the human pi class glutathione S-transferase gene in multidrug-resistant MCF7 breast cancer cells. J Biol Chem 269:16397–16402.
  • Moffat, G. J., McLaren, A. W., et al. (1996b). Functional characterization of the transcription silencer element located within the human pi class glutathione S-transferase promoter. J Biol Chem 271:20740–20747.
  • Moffat, G. J., McLaren, A. W., et al. (1996a). Sp1-mediated transcriptional activation of the human pi class glutathione S-transferase promoter. J Biol Chem 271:1054–1060.
  • Moffat, G. J., McLaren, A. W., et al. (1997). Transcriptional and post-transcriptional mechanisms can regulate cell-specific expression of the human pi-class glutathione S-transferase gene. Biochem J 324(Pt 1):91–95.
  • Mukherjee, B., Salavaggione, O. E., et al. (2006). Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos 34:1237–1246.
  • Papandreou, I., Goliasova, T., et al. (2011). Anticancer drugs that target metabolism: is dichloroacetate the new paradigm? Int J Cancer 128:1001–1008.
  • Patrick, B., Li, J., et al. (2005). Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression. Biochem Biophys Res Commun 334:425–432.
  • Pool-Zobel, B., Veeriah, S., et al. (2005). Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat Res 591(1–2):74–92.
  • Ritchie, K. J., Henderson, C. J., et al. (2007). Glutathione transferase pi plays a critical role in the development of lung carcinogenesis following exposure to tobacco-related carcinogens and urethane. Cancer Research 67:9248–9257.
  • Ritchie, K. J., Walsh, S., et al. (2009). Markedly enhanced colon tumorigenesis in ApcMin mice lacking glutathione S-transferase pi. Proc Natl Acad Sci U S A 106:20859–20864.
  • Ross, J., Plummer, S. M., et al. (2010). Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo. Toxicol Sci 116:452–466.
  • Scheer, N., Ross, J., et al. (2010). In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice. Drug Metab Dispos 38:1046–1053.
  • Scheer, N., Ross, J., et al. (2008). A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response. J Clin Invest 118:3228–3239.
  • Schmuck, E., Cappello, J., et al. (2008). Deletion of Glu155 causes a deficiency of glutathione transferase Omega 1-1 but does not alter sensitivity to arsenic trioxide and other cytotoxic drugs. Int J Biochem Cell Biol 40:2553–2559.
  • Schmuck, E. M., Board, P. G., et al. (2005). Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer’s and Parkinson’s diseases. Pharmacogenet Genomics 15:493–501.
  • Simula, A. P., Crichton, M. B., et al. (1993). Heterologous expression of drug-metabolizing enzymes in cellular and whole animal models. Toxicology 82(1–3):3–20.
  • Singh, S. P., Niemczyk, M., et al. (2010). Disruption of the mGsta4 gene increases life span of C57BL mice. J Gerontol A Biol Sci Med Sci 65:14–23.
  • Smeyne, M., Boyd, J., et al. (2007). GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A 104:1977–1982.
  • Srinivasan, P., Suchalatha, S., et al. (2008). Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-nitroquinoline 1-oxide induced oral cancer. Chem Biol Interact 172:224–234.
  • Stacpoole, P. W., Kurtz, T. L., et al. (2008). Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 60(13–14):1478–1487.
  • Su, L. K., Kinzler, K. W., et al. (1992). Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 256:668–670.
  • Talalay, P., Dinkova-Kostova, A. T., et al. (2003). Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Adv Enzyme Regul 43:121–134.
  • Tchaikovskaya, T., Fraifeld, V., et al. (2002). mGSTM5 KO mice as a potential model for brain studies. Neural Plast 9:119.
  • Tew, K. D. (2007). Redox in redux: emergent roles for glutathione S-transferase P (GSTP) in regulation of cell signaling and S-glutathionylation. Biochem Pharmacol 73:1257–1269.
  • Townsend, D. M. (2007). S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324.
  • Townsend, D. M., Manevich, Y., et al. (2009a). Novel role for glutathione S-transferase pi. Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–445.
  • Townsend, D. M., Tew, K. D. (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375.
  • Townsend, D. M., Tew, K. D., et al. (2009b). Role of glutathione S-transferase pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother 63:79–85.
  • Trivedi, S. G., Newson, J., et al. (2006). Essential role for hematopoietic prostaglandin D2 synthase in the control of delayed type hypersensitivity. Proc Natl Acad Sci U S A 103:5179–5184.
  • Urade, Y., Eguchi, N., et al. (2004). [Functional analyses of lipocalin-type and hematopoietic prostaglandin D synthases]. Nippon Yakurigaku Zasshi 123:5–13.
  • Wagner, G. C., Reuhl, K. R., et al. (2006). A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36:779–793.
  • Wang, B., Huang, G., et al. (2010). Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol 53:508–518.
  • Wareing, C. J., Black, S. M., et al. (1993). Increased levels of alpha-class and pi-class glutathione S-transferases in cell-lines resistant to 1-chloro-2,4-dinitrobenzene. Eur J Biochem 217:671–676.
  • Whitbread, A. K., Masoumi, A., et al. (2005). Characterization of the omega class of glutathione transferases. Meth Enzymol 401:78–99.
  • Whitbread, A. K., Mellick, G. D., et al. (2004). Glutathione transferase omega class polymorphisms in Parkinson disease. Neurology 62:1910–1911.
  • Whitbread, A. K., Tetlow, N., et al. (2003). Characterization of the human omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 13:131–144.
  • Whittington, A. T., Webb, G. C., et al. (1996). Characterization of a cDNA and gene encoding the mouse theta class glutathione transferase mGSTT2 and its localization to chromosome 10B5-C1. Genomics 33:105–111.
  • Wolf, C. R. (2001). Chemoprevention: increased potential to bear fruit. Proc Natl Acad Sci U S A 98:2941–2943.
  • Wu, X., Pandolfi, P. P. (2001). Mouse models for multistep tumorigenesis. Trends Cell Biol 11:S2–S9
  • Xia, C., Taylor, J. B., et al. (1993). The human glutathione S-transferase P1-1 gene: modulation of expression by retinoic acid and insulin. Biochem J 292(Pt 3):845–850.
  • Xia, C. L., Cowell, I. G., et al. (1991). Glutathione transferase pi its minimal promoter and downstream cis-acting element. Biochem Biophys Res Commun 176:233–240.
  • Xiong, Y., Uys, J. D., et al. (2011). S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal. 2011 Jan 14. [Epub ahead of print]
  • Yang, Y., Xu, Y., et al. (2008). Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-kappaB translocation. Toxicol Appl Pharmacol 230:187–196.
  • Yin, Z. L., Dahlstrom, J. E., et al. (2001). Immunohistochemistry of omega class glutathione S-transferase in human tissues. J Histochem Cytochem 49:983–987.
  • Yochum, C. L., Bhattacharya, P., et al. (2010). Animal model of autism using GSTM1 knockout mice and early post-natal sodium valproate treatment. Behav Brain Res 210:202–210.
  • Yu, S. T., Chen, T. M., et al. (2009). Downregulation of GSTpi expression by tryptanthrin contributing to sensitization of doxorubicin-resistant MCF-7 cells through c-jun NH2-terminal kinase-mediated apoptosis. Anticancer Drugs 20:382–388.
  • Zhong, S., Howie, A. F., et al. (1991). Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12:1533–1537.
  • Zhou, H., Brock, J., et al. (2011). Novel folding and stability defects cause a deficiency of human glutathione transferase omega 1. J Biol Chem 286:4271–4279.
  • Zhou, J., Wolf, C. R., et al. (2008). Glutathione transferase p1: an endogenous inhibitor of allergic responses in a mouse model of asthma. Am J Respir Crit Care Med 178:1202–1210.
  • Zimniak, P., Singhal, S. S., et al. (1994). Estimation of genomic complexity, heterologous expression, and enzymatic characterization of mouse glutathione S-transferase mGSTA4-4 (GST 5.7). J Biol Chem 269:992–1000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.