1,188
Views
121
CrossRef citations to date
0
Altmetric
Review Article

Nuclear receptors in bile acid metabolism

&
Pages 145-155 | Received 29 Aug 2012, Accepted 09 Oct 2012, Published online: 21 Jan 2013

References

  • Ananthanarayanan, M., Balasubramanian, N., Makishima, M., Mangelsdorf, D. J., Suchy, F. J. (2001). Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865.
  • Arrese, M., Trauner, M., Sacchiero, R. J., Crossman, M. W., Shneider, B. L. (1998). Neither intestinal sequestration of bile acids nor common bile duct ligation modulate the expression and function of the rat ileal bile acid transporter. Hepatology 28:1081–1087.
  • Beilke, L. D., Aleksunes, L. M., Holland, R. D., Besselsen, D. G., Beger, R. D., Klaassen, C. D., et al. (2009a). Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos 37:1035–1045.
  • Beilke, L. D., Aleksunes, L. M., Olson, E. R., Besselsen, D. G., Klaassen, C. D., Dvorak, K., et al. (2009b). Decreased apoptosis during CAR-mediated hepatoprotection against lithocholic acid-induced liver injury in mice. Toxicol Lett 188:38–44.
  • Berge, K. E., Tian, H., Graf, G. A., Yu, L., Grishin, N. V., Schultz, J., et al. (2000). Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775.
  • Bhalla, S., Ozalp, C., Fang, S., Xiang, L., Kemper, J. K. (2004). Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem 279:45139–45147.
  • Bhatnagar, S., Damron, H. A., Hillgartner, F. B. (2009). Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem 284:10023–10033.
  • Boyer, J. L. (1980). New concepts of mechanisms of hepatocyte bile formation. Physiol Rev 60:303–326.
  • Boyer, J. L., Trauner, M., Mennone, A., Soroka, C. J., Cai, S. Y., Moustafa, T., et al. (2006). Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290:G1124–G1130.
  • Chai, J., Luo, D., Wu, X., Wang, H., He, Y., Li, Q., et al. (2011). Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg 15:996–1004.
  • Chatterjee, B., Echchgadda, I., Song, C. S. (2005). Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol 400:165–191.
  • Chen, F., Ma, L., Dawson, P. A., Sinal, C. J., Sehayek, E., Gonzalez, F. J., et al. (2003). Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J Biol Chem 278:19909–19916.
  • Chen, X., Chen, F., Liu, S., Glaeser, H., Dawson, P. A., Hofmann, A. F., et al. (2006). Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor. Mol Pharmacol 69:1913–1923.
  • Chiang, J. Y. (1998). Regulation of bile acid synthesis. Front Biosci 3:D176–D193.
  • Chiang, J. Y. (2009). Bile acids: regulation of synthesis. J Lipid Res 50:1955–1966.
  • Childs, S., Yeh, R. L., Georges, E., Ling, V. (1995). Identification of a sister gene to P-glycoprotein. Cancer Res 55:2029–2034.
  • Choi, M., Moschetta, A., Bookout, A. L., Peng, L., Umetani, M., Holmstrom, S. R., et al. (2006). Identification of a hormonal basis for gallbladder filling. Nat Med 12:1253–1255.
  • Claudel, T., Zollner, G., Wagner, M., Trauner, M. (2011). Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim Biophys Acta 1812:867–878.
  • Cui, Y. J., Aleksunes, L. M., Tanaka, Y., Goedken, M. J., Klaassen, C. D. (2009). Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci 110:47–60.
  • Dawson, P. A., Hubbert, M., Haywood, J., Craddock, A. L., Zerangue, N., Christian, W. V., et al. (2005). The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 280:6960–6968.
  • Denson, L. A., Sturm, E., Echevarria, W., Zimmerman, T. L., Makishima, M., Mangelsdorf, D. J., et al. (2001). The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121:140–147.
  • Drocourt, L., Ourlin, J. C., Pascussi, J. M., Maurel, P., Vilarem, M. J. (2002). Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277:25125–25132.
  • Eloranta, J. J., Kullak-Ublick, G. A. (2005). Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433:397–412.
  • Fiorucci, S., Cipriani, S., Baldelli, F., Mencarelli, A. (2010). Bile acid-activated receptors in the treatment of dyslipidemia and related disorders. Prog Lipid Res 49:171–185.
  • Gao, J., Xie, W. (2012). Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends Pharmacol Sci 33:552–558.
  • Goodwin, B., Jones, S. A., Price, R. R., Watson, M. A., McKee, D. D., Moore, L. B., et al. (2000). A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526.
  • Grober, J., Zaghini, I., Fujii, H., Jones, S. A., Kliewer, S. A., Willson, T. M., et al. (1999). Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid x receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 274:29749–29754.
  • Guo, G. L., Lambert, G., Negishi, M., Ward, J. M., Brewer, H. B., Jr., Kliewer, S. A., et al. (2003). Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J Biol Chem 278:45062–45071.
  • Han, S., Chiang, J. Y. (2009). Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos 37:469–478.
  • Han, S., Li, T., Ellis, E., Strom, S., Chiang, J. Y. (2010). A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol 24:1151–1164.
  • He, J., Nishida, S., Xu, M., Makishima, M., Xie, W. (2011). PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts. Gastroenterology 140:2095–2106.
  • Hirohashi, T., Suzuki, H., Takikawa, H., Sugiyama, Y. (2000). ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem 275:2905–2910.
  • Hofmann, A. F. (2002). Rifampicin and treatment of cholestatic pruritus. Gut 51:756–757.
  • Hofmann, A. F. (2004). Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev 36:703–722.
  • Inagaki, T., Choi, M., Moschetta, A., Peng, L., Cummins, C. L., McDonald, J. G., et al. (2005). Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–225.
  • Kast, H. R., Goodwin, B., Tarr, P. T., Jones, S. A., Anisfeld, A. M., Stoltz, C. M., et al. (2002). Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915.
  • Kim, I., Ahn, S. H., Inagaki, T., Choi, M., Ito, S., Guo, G. L., et al. (2007). Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48:2664–2672.
  • Kir, S., Beddow, S. A., Samuel, V. T., Miller, P., Previs, S. F., Suino-Powell, K., et al. (2011). FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–1624.
  • Kliewer, S. A., Willson, T. M. (2002). Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43:359–364.
  • Kok, T., Hulzebos, C. V., Wolters, H., Havinga, R., Agellon, L. B., Stellaard, F., et al. (2003). Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 278:41930–41937.
  • Kong, B., Wang, L., Chiang, J. Y., Zhang, Y., Klaassen, C. D., Guo, G. L. (2012). Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 56:1034–1043.
  • Kullak-Ublick, G. A., Stieger, B., Hagenbuch, B., Meier, P. J. (2000). Hepatic transport of bile salts. Semin Liver Dis 20:273–292.
  • Langheim, S., Yu, L., von Bergmann, K., Lutjohann, D., Xu, F., Hobbs, H. H., et al. (2005). ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res 46:1732–1738.
  • Lee, H., Zhang, Y., Lee, F. Y., Nelson, S. F., Gonzalez, F. J., Edwards, P. A. (2006). FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47:201–214.
  • Lee, M. H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., et al. (2001). Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83.
  • Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191.
  • Li, T., Chiang, J. Y. (2005). Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288:G74–G84.
  • Lundasen, T., Galman, C., Angelin, B., Rudling, M. (2006). Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 260:530–536.
  • Makishima, M., Lu, T. T., Xie, W., Whitfield, G. K., Domoto, H., Evans, R. M., et al. (2002). Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316.
  • Makishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., et al. (1999). Identification of a nuclear receptor for bile acids. Science 284:1362–1365.
  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., et al. (1995). The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Marschall, H. U., Wagner, M., Bodin, K., Zollner, G., Fickert, P., Gumhold, J., et al. (2006). Fxr(-/-) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids. J Lipid Res 47:582–592.
  • Mason, J. I., Boyd, G. S. (1978). The suppressive effect of the catatoxic steroid, pregnenolone-16alpha-carbonitrile, on liver microsomal cholesterol-7alpha-hydroxlyase. Steroids 31:849–854.
  • McCarthy, T. C., Li, X., Sinal, C. J. (2005). Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280:23232–23242.
  • Mencarelli, A., Fiorucci, S. (2010). FXR an emerging therapeutic target for the treatment of atherosclerosis. J Cell Mol Med 14:79–92.
  • Mennone, A., Soroka, C. J., Cai, S. Y., Harry, K., Adachi, M., Hagey, L., et al. (2006). Mrp4-/- mice have an impaired cytoprotective response in obstructive cholestasis. Hepatology 43:1013–1021.
  • Miao, J., Fang, S., Bae, Y., Kemper, J. K. (2006). Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha. J Biol Chem 281:14537–14546.
  • Miyata, M., Sakaida, Y., Matsuzawa, H., Yoshinari, K., Yamazoe, Y. (2011). Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (Fxr)-null mice. Biol Pharm Bull 34:1885–1889.
  • Modica, S., Bellafante, E., Moschetta, A. (2009). Master regulation of bile acid and xenobiotic metabolism via the FXR, PXR and CAR trio. Front Biosci 14:4719–4745.
  • Nagpal, S., Na, S., Rathnachalam, R. (2005). Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687.
  • Neimark, E., Chen, F., Li, X., Shneider, B. L. (2004). Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40:149–156.
  • Nishida, S., Ozeki, J., Makishima, M. (2009). Modulation of bile acid metabolism by 1alpha-hydroxyvitamin D3 administration in mice. Drug Metab Dispos 37:2037–2044.
  • Ogura, M., Nishida, S., Ishizawa, M., Sakurai, K., Shimizu, M., Matsuo, S., et al. (2009). Vitamin D3 modulates the expression of bile acid regulatory genes and represses inflammation in bile duct-ligated mice. J Pharmacol Exp Ther 328:564–570.
  • Pandak, W. M., Li, Y. C., Chiang, J. Y., Studer, E. J., Gurley, E. C., Heuman, D. M., et al. (1991). Regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat. J Biol Chem 266:3416–3421.
  • Pellicciari, R., Costantino, G., Camaioni, E., Sadeghpour, B. M., Entrena, A., Willson, T. M., et al. (2004). Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid. J Med Chem 47:4559–4569.
  • Porez, G., Prawitt, J., Gross, B., Staels, B. (2012). Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease: Thematic Review Series: New Lipid and Lipoprotein Targets for the Treatment of Cardiometabolic Diseases. J Lipid Res 53:1723–1737.
  • Potthoff, M. J., Boney-Montoya, J., Choi, M., He, T., Sunny, N. E., Satapati, S., et al. (2011). FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab 13:729–738.
  • Rao, A., Haywood, J., Craddock, A. L., Belinsky, M. G., Kruh, G. D., Dawson, P. A. (2008). The organic solute transporter alpha-beta, Ostalpha-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci U S A 105:3891–3896.
  • Rizzo, G., Renga, B., Mencarelli, A., Pellicciari, R., Fiorucci, S. (2005). Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord 5:289–303.
  • Russell, D. W., Setchell, K. D. (1992). Bile acid biosynthesis. Biochemistry 31:4737–4749.
  • Saini, S. P., Sonoda, J., Xu, L., Toma, D., Uppal, H., Mu, Y., et al. (2004). A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 65:292–300.
  • Schaap, F. G., van der Gaag, N. A., Gouma, D. J., Jansen, P. L. (2009). High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology 49:1228–1235.
  • Schmidt, D. R., Holmstrom, S. R., Fon Tacer, K., Bookout, A. L., Kliewer, S. A. Mangelsdorf, D. J. (2010). Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem 285:14486–14494.
  • Schmiedlin-Ren, P., Thummel, K. E., Fisher, J. M., Paine, M. F., Watkins, P. B. (2001). Induction of CYP3A4 by 1 alpha,25-dihydroxyvitamin D3 is human cell line-specific and is unlikely to involve pregnane X receptor. Drug Metab Dispos 29:1446–1453.
  • Sinal, C. J., Tohkin, M., Miyata, M., Ward, J. M., Lambert, G., Gonzalez, F. J. (2000). Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744.
  • Sinha, J., Chen, F., Miloh, T., Burns, R. C., Yu, Z. Shneider, B. L. (2008). Beta-Klotho and FGF-15/19 inhibit the apical sodium-dependent bile acid transporter in enterocytes and cholangiocytes. Am J Physiol Gastrointest Liver Physiol 295:G996–G1003.
  • Smit, J. J., Schinkel, A. H., Oude Elferink, R. P., Groen, A. K., Wagenaar, E., van Deemter, L., et al. (1993). Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462.
  • Song, K. H., Li, T., Owsley, E., Strom, S., Chiang, J. Y. (2009). Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305.
  • Stahlberg, D. (1995). Effects of pregnenolone-16 alpha-carbonitrile on the metabolism of cholesterol in rat liver microsomes. Lipids 30:361–364.
  • Stanley, L. A., Horsburgh, B. C., Ross, J., Scheer, N., Wolf, C. R. (2006). PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 38:515–597.
  • Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., et al. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98:3369–3374.
  • Stedman, C. A., Liddle, C., Coulter, S. A., Sonoda, J., Alvarez, J. G., et al. (2005). Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 102:2063–2068.
  • Strautnieks, S. S., Kagalwalla, A. F., Tanner, M. S., Knisely, A. S., Bull, L., Freimer, N., et al. (1997). Identification of a locus for progressive familial intrahepatic cholestasis PFIC2 on chromosome 2q24. Am J Hum Genet 61:630–633.
  • Thummel, K. E., Brimer, C., Yasuda, K., Thottassery, J., Senn, T., Lin, Y., et al. (2001). Transcriptional control of intestinal cytochrome P-4503A by 1alpha,25-dihydroxy vitamin D3. Mol Pharmacol 60:1399–1406.
  • Trauner, M., Boyer, J. L. (2003). Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671.
  • Wada, T., Gao, J., Xie, W. (2009). PXR and CAR in energy metabolism. Trends Endocrinol Metab 20:273–279.
  • Wagner, M., Fickert, P., Zollner, G., Fuchsbichler, A., Silbert, D., Tsybrovskyy, O., et al. (2003). Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125:825–838.
  • Wagner, M., Zollner, G., Trauner, M. (2011). Nuclear receptors in liver disease. Hepatology 53:1023–1034.
  • Wang, H., Venkatesh, M., Li, H., Goetz, R., Mukherjee, S., Biswas, A., et al. (2011). Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice. J Clin Invest 121:3220–3232.
  • Wang, L., Lee, Y. K., Bundman, D., Han, Y., Thevananther, S., Kim, C. S., et al. (2002). Redundant pathways for negative feedback regulation of bile Acid production. Dev Cell 2:721–731.
  • Wistuba, W., Gnewuch, C., Liebisch, G., Schmitz, G., Langmann, T. (2007). Lithocholic acid induction of the FGF19 promoter in intestinal cells is mediated by PXR. World J Gastroenterol 13:4230–4235.
  • Zelcer, N., Reid, G., Wielinga, P., Kuil, A., van der Heijden, I., Schuetz, J. D., et al. (2003). Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 371:361–367.
  • Zollner, G., Wagner, M., Fickert, P., Silbert, D., Gumhold, J., Zatloukal, K., et al. (2007). Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis. Liver Int 27:920–929.
  • Zollner, G., Wagner, M., Moustafa, T., Fickert, P., Silbert, D., Gumhold, J., et al. (2006). Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290:G923–G932.
  • Zweers, S. J., Booij, K. A., Komuta, M., Roskams, T., Gouma, D. J., Jansen, P. L., et al. (2012). The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract. Hepatology 55:575–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.