364
Views
26
CrossRef citations to date
0
Altmetric
Review Article

The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics

, , , &
Pages 431-440 | Published online: 12 Sep 2013

References

  • Alazizi A, Liu MY, Williams FE, et al. (2011). Identification, characterization, and ontogenic study of a catechol O-methyltransferase from zebrafish. Aquat Toxicol 102:18–23
  • Alcaro A, Huber R, Panksepp J. (2007). Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res Rev 56:283–321
  • Alderton W, Berghmans S, Butler P, et al. (2010). Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557
  • Alexander HC, Dill DC, Smith LW, et al. (1988). Bisphenol A: Acute aquatic toxicity. Environ Toxicol Chem 7:19–26
  • Anichtchik OV, Kaslin J, Peitsaro N, et al. (2004). Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88:443–453
  • Appelbaum L, Vallone D, Anzulovich A, et al. (2006). Zebrafish arylalkylamine-N-acetyltransferase genes -- targets for regulation of the circadian clock. J Mol Endocrinol 36:337–347
  • Baumann E. (1876). Ueber sulfosauren im harn. Dtsch Chem Ges 9:54–58
  • Best JH, Pflugmacher S, Wiegand C, et al. (2002). Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat Toxicol 60:223–231
  • Brodskiĭ LI, Ivanov VV, Kalaĭdzidis IL, et al. (1995). GeneBee-NET: Internet-based server for analyzing biopolymers structure. Biochemistry 60:923–928
  • Brown DD. (1997). The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci USA 94:13011–13016
  • Cadwallader AB, Yost HJ. (2006). Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II. The 6-O-sulfotransferase family. Dev Dyn 235:3432–34327
  • Cadwallader AB, Yost HJ. (2007). Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: III. 2-O-sulfotransferase and C5-epimerases. Dev Dyn 236:581–586
  • Chapman E, Best MD, Hanson SR, Wong CH. (2004). Sulfotransferases: Structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:3526–3548
  • Colborn T, Dumanoski D, Myers JP. (1996). Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York, NY: Dutton
  • Dajani R, Cleasby A, Neu M, et al. (1999). X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure--activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem 274:37862–37868
  • Donnarumma L, De Angelis G, Gramenzi F, Vittozzi L. (1988). Xenobiotic metabolizing enzyme systems in test fish. III. Comparative studies of liver cytosolic glutathione S-transferases. Ecotoxicol Environ Saf 16:180–186
  • Falany CN. (1997). Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216
  • Freeman HC, Sangalang G, Flemming B. (1982). The sublethal effects of a polychlorinated biphenyl (Aroclor 1254) diet on the Atlantic cod (Gadus morhua). Sci Tot Environ 24:1–11
  • Gamage N, Barnett A, Hempel N, et al. (2006). Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22
  • George SG, Young P. (1986). The time course of effects of cadmium and 3-methylcholanthrene on activities of enzymes of xenobiotic metabolism and metallothionein levels in the plaice, Pleuronectes platessa. Comp Biochem Physiol C 83:37–44
  • Gill TS, Tewari H, Pande J. (1990). Use of the fish enzyme system in monitoring water quality: Effects of mercury on tissue enzymes. Comp Biochem Physiol C 97:287–292
  • Goldstone JV, McArthur AG, Kubota A, et al. (2010). Identification and developmental expression of the full complement of cytochrome P450 genes in zebrafish. BMC Genomics 11:643
  • Hagey LR, Møller PR, Hofmann AF, Krasowski MD. (2010). Diversity of bile salts in fish and amphibians: Evolution of a complex biochemical pathway. Physiol Biochem Zool 83:308–321
  • Hansen PD, vonWesternhagen H, Rosenthal H. (1985). Chlorinated hydrocarbons and hatching success in Baltic herring spring spawners. Mar Environ Res 15:59–76
  • Haslewood GA. (1967). Bile salt evolution. J Lipid Res 8:535–550
  • Helenius IT, Yeh JR. (2012). Small zebrafish in a big chemical pond. J Cell Biochem 113:2208–2216
  • Hemmerich S, Verdugo D, Rath VL. (2004). Strategies for drug discovery by targeting sulfation pathways. Drug Discov Today 15:967–975
  • Her C, Wood TC, Eichler EE, et al. (2008). Human hydroxysteroid sulfotransferase SULT2B1: Two enzymes encoded by a single chromosome 19 gene. Genomics 53:284–295
  • Hill AJ, Teraoka H, Heideman W, Peterson RE. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19
  • Hofmann AF, Hagey LR. (2008). Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483
  • Hofmann AF, Hagey LR, Krasowski MD. (2010). Bile salts of vertebrates: Structural variation and possible evolutionary significance. J Lipid Res 51:226–246
  • Hofmann AF, Small DM. (1967). Detergent properties of bile salts: Correlation with physiological function. Annu Rev Med 18:333–376
  • Hsu HJ, Hsu NC, Hu MC, Chung BC. (2006a). Steroidogenesis in zebrafish and mouse models. Mol Cell Endocrinol 248:160–163
  • Hsu HJ, Liang MR, Chen CT, Chung BC. (2006b). Pregnenolone stabilizes microtubules and promotes zebrafish embryonic cell movement. Nature 439:480–483
  • Hu MC, Chiang EF, Tong SK, et al. (2001). Regulation of steroidogenesis in transgenic mice and zebrafish. Mol Cell Endocrinol 171:9–14
  • Huang H, Wu Q. (2010). Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity. PloS One 5:e9144
  • Huertas M, Hagey L, Hofmann AF, et al. (2010). Olfactory sensitivity to bile fluid and bile salts in the European eel (Anguilla anguilla), goldfish (Carassius auratus) and Mozambique tilapia (Oreochromis mossambicus) suggests a ‘broad range' sensitivity not confined to those produced by conspecifics alone. J Exp Biol 213:308–317
  • Jenny MJ, Karchner SI, Franks DG, et al. (2009). Distinct roles of two zebrafish AHR repressors (AHRRa and AHRRb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 110:426–441
  • Jobling S, Sheahan D, Osborne JA, et al. (1996). Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environ Toxicol Chem 15:194–202
  • Jones HS, Panter GH, Hutchinson TH, Chipman JK. (2010). Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7:23–30
  • Jones RN. (1989). Antimicrobial activity and interaction of pefloxacin and its principal metabolites. Collaborative Antimicrobial Susceptibility Testing Group. Eur J Clin Microbiol Infect Dis 8:551–556
  • Kammann U, Vobach M, Wosniok W, et al. (2009). Acute toxicity of 353-nonylphenol and its metabolites for zebrafish embryos. Environ Sci Pollut Res Int 16:227–231
  • Kang JH, Asai D, Katayama Y. (2007). Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit Rev Toxicol 37:607–625
  • Kirubagaran R, Joy KP. (1990). Changes in brain monoamine levels and monoamine-oxidase activity in the catfish, Clarias batrachus, during chronic treatments with mercurials. Bull Environ Contam Toxicol 45:88–93
  • Kurogi K, Dillon J, Nasser A, et al. (2010). Sulfation of drug compounds by the zebrafish cytosolic sulfotransferases (SULTs). Drug Metab Lett 4:62–68
  • Kurogi K, Krasowski MD, Injeti E, et al. (2011). A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs). J Steroid Biochem Mol Biol 127:307–314
  • Li S, Pozhitkov A, Ryan RA, et al. (2010). Constructing a fish metabolic network model. Genome Biol 11:R115
  • Liao WQ, Liang XF, Wang L, et al. (2006). Molecular cloning and characterization of alpha-class glutathione S-transferase gene from the liver of silver carp, bighead carp, and other major Chinese freshwater fishes. J Biochem Mol Toxicol 20:114–126
  • Lieschke GJ, Currie PD. (2007). Animal models of human disease: Zebrafish swim into view. Nat Rev Genet 8:353–367
  • Liu MY, Yang YS, Sugahara T, et al. (2005). Identification of a novel zebrafish SULT1 cytosolic sulfotransferase: Cloning, expression, characterization, and developmental expression study. Arch Biochem Biophys 437:10–19
  • Liu TA, Bhuiyan S, Snow R, et al. (2008). Identification and characterization of two novel cytosolic sulfotransferases, SULT1 ST7 and SULT1 ST8, from zebrafish. Aquat Toxicol 89:94–102
  • Liu TA, Bhuiyan S, Liu MY, et al. (2010). Zebrafish as a model for the study of the phase II cytosolic sulfotransferases. Curr Drug Metab 11:538–546
  • Liu YW, Chan WK. (2002). Thyroid hormones are important for embryonic to larval transitory phase in zebrafish. Differentiation 70:36–45
  • Mac MJ, Schwartz TR, Edsall CC, Frank MF. (1993). Polychlorinated biphenyls in Great Lakes lake trout and their eggs: Relations to survival and congener composition 1979–1988. J Great Lakes Res 19:752–765
  • Matsumoto T, Kobayashi M, Moriwaki T, et al. (2004). Survey of estrogenic activity in fish feed by yeast estrogen-screen assay. Comp Biochem Physiol C Toxicol Pharmacol 139:147–152
  • McGrath P, Li CQ. (2008). Zebrafish: A predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401
  • McKinley ET, Baranowski TC, Blavo DO, et al. (2005). Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141:128–137
  • Michel WC, Lubomudrov LM. (1995). Specificity and sensitivity of the olfactory organ of the zebrafish, Danio rerio. J Comp Physiol A 177:191–199
  • Miksicek RJ. (1993). Commonly occurring plant flavonoids have estrogenic activity. Mol Pharmacol 44:37–43
  • Miksicek RJ. (1995). Estrogenic flavonoids: Structural requirements for biological activity. Proc Soc Exp Biol Med 208:44–50
  • Milan DJ, Jones IL, Ellinor PT, MacRae CA. (2006). In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am J Physiol Heart Circ Physiol 291:H269–H273
  • Miller WL. (1988). Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318
  • Mishiro E, Liu MY, Sakakibara Y, et al. (2004). Zebrafish tyrosylprotein sulfotransferase: Molecular cloning, expression, and functional characterization. Biochem Cell Biol 82:295–303
  • Missale C, Nash SR, Robinson SW, et al. (1998). Dopamine receptors: From structure to function. Physiol Rev 78:189–225
  • Mohammed YI, Kurogi K, Shaban AA, et al. (2012). Identification and characterization of zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5. Aquat Toxicol 112–113:11–18
  • Nikolaev VK, Leontovich AM, Drachev VA, Brodsky LI. (1997). Building multiple alignment using iterative analyzing biopolymers structure dynamic improvement of the initial motif alignment. Biochemistry 62:578–582
  • Nimrod AC, Benson WH. (1996). Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26:335–364
  • Ng Y, Hanson S, Malison JA, et al. (2006). Genistein and other isoflavones found in soybeans inhibit estrogen metabolism in salmonid fish. Aquaculture 254:658–665
  • North TE, Babu IR, Vedder LM, et al. (2010). PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci USA 107:17315–17320
  • Ohkimoto K, Liu MY, Suiko M, et al. (2004). Characterization of a zebrafish estrogen-sulfating cytosolic sulfotransferase: Inhibitory effects and mechanism of action of phytoestrogens. Chem Biol Interact 147:1–7
  • Ohkimoto K, Sugahara T, Sakakibara Y, et al. (2003). Sulfonation of environmental estrogens by zebrafish cytosolic sulfotransferases. Biochem Biophys Res Commun 309:7–11
  • Örn S, Andersson PL, Förlin L, et al. (1998). The impact on reproduction of an orally administered mixture of selected PCBs in zebrafish (Danio rerio). Arch Environ Contam Toxicol 35:52–57
  • Otterness DM, Wieben ED, Wood TC, et al. (1992). Human liver dehydroepiandrosterone sulfotransferase: Molecular cloning and expression of cDNA. Mol Pharmacol 41:865–872
  • Pocar P, Brevini TA, Antonini S, Gandolfi F. (2006). Cellular and molecular mechanisms mediating the effect of polychlorinated biphenyls on oocyte in vitro maturation. Reprod Toxicol 22:242–249
  • Power DM, Llewellyn L, Faustino M, et al. (2001). Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130:447–459
  • Radominska A, Comer KA, Zimniak P, et al. (1990). Human liver steroid sulphotransferase sulphates bile acids. Biochem J 272:597–604
  • Rink E, Wullimann MF. (2001). The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330
  • Reschly EJ, Ai N, Ekins S, et al. (2008). Evolution of the bile salt nuclear receptor FXR in vertebrates. J Lipid Res 49:1577–1587
  • Rubinstein AL. (2003). Zebrafish: From disease modeling to drug discovery. Curr Opin Drug Discov Dev 6:218–223
  • Safe SH. (1994). Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87–149
  • Sassi-Messai S, Gibert Y, Bernard L, et al. (2009). The phytoestrogen genistein affects zebrafish development through two different pathways. PLoS One 4:e4935
  • Scornaienchi ML, Thornton C, Willett KL, Wilson JY. (2010a). Cytochrome P450-mediated 17beta-estradiol metabolism in zebrafish (Danio rerio). J Endocrinol 206:317–325
  • Scornaienchi ML, Thornton C, Willett KL, Wilson JY. (2010b). Functional differences in the cytochrome P450 1 family enzymes from zebrafish (Danio rerio) using heterologously expressed proteins. Arch Biochem Biophys 502:17–22
  • Sim E, Lack N, Wang CJ, et al. (2008). Arylamine N-acetyltransferases: Structural and functional implications of polymorphisms. Toxicology 254:170–183
  • Sohoni P, Tyler CR, Hurd K, et al. (2001). Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas). Environ Sci Technol 35:2917–2925
  • Spitsbergen JM, Kent ML. (2003). The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87
  • Srikanth K, Pereira E, Duarte AC, Ahmad I. (2013). Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish – a review. Environ Sci Pollut Res Int 20:2133–2149
  • Staples CA, Dorn PB, Klecka GM, et al. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173
  • Sugahara T, Liu CC, Carter G, et al. (2003b). cDNA cloning, expression, and functional characterization of a zebrafish SULT1 cytosolic sulfotransferase. Arch Biochem Biophys 414:67–73
  • Sugahara T, Liu CC, Govind Pai T, Liu MC. (2003a). Molecular cloning, expression, and functional characterization of a novel zebrafish cytosolic sulfotransferase. Biochem Biophys Res Commun 300:725–730
  • Sugahara T, Liu CC, Pai TG, et al. (2003c). Sulfation of hydroxychlorobiphenyls. Molecular cloning, expression, and functional characterization of zebrafish SULT1 sulfotransferases. Eur J Biochem 270:2404–2411
  • Sugahara T, Yang YS, Liu CC, et al. (2003d). Sulphonation of dehydroepiandrosterone and neurosteroids: Molecular cloning, expression, and functional characterization of a novel zebrafish SULT2 cytosolic sulphotransferase. Biochem J 375:785–791
  • Tanabe S. (2002). Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. Mar Pollut Bull 45:69–77
  • Thirumalai V, Cline HT. (2008). Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol 100:1635–1648
  • Tseng HP, Hseu TH, Buhler DR, et al. (2005). Constitutive and xenobiotics-induced expression of a novel CYP3A gene from zebrafish larva. Toxicol Appl Pharmacol 205:247–258
  • van den Hurk R, Lambert JGD. (1983). Ovarian steroid glucuronides function as sex pheromones for male zebrafish, Brachydanio rerio. Can J Zool 61:2381–2387
  • Weinshilboum RM, Otterness DM, Aksoy IA, et al. (1997). Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J 11:3–14
  • Yamazoe Y, Nagata K, Ozawa S, Kato R. (1994). Structural similarity and diversity of sulfotransferases. Chem Biol Interact 92:107–117
  • Yang FX, Xu Y, Hui Y. (2005). Reproductive effects of prenatal exposure to nonylphenol on zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 142:77–84
  • Yasuda S, Burgess M, Yasuda T, et al. (2009b). A novel hydroxysteroid-sulfating cytosolic sulfotransferase, SULT3 ST3, from zebrafish: Identification, characterization, and ontogenic study. Drug Metab Lett 3:217–227
  • Yasuda S, Kumar AP, Liu MY, et al. (2005a). Identification of a novel thyroid hormone-sulfating cytosolic sulfotransferase, SULT1 ST5, from zebrafish. FEBS J 272:3828–3837
  • Yasuda S, Liu CC, Takahashi S, et al. (2005b). Identification of a novel estrogen-sulfating cytosolic SULT from zebrafish: Molecular cloning, expression, characterization, and ontogeny study. Biochem Biophys Res Commun 330:219–225
  • Yasuda S, Liu MY, Yang YS, et al. (2006). Identification of novel hydroxysteroid-sulfating cytosolic SULTs, SULT2 ST2 and SULT2 ST3, from zebrafish: Cloning, expression, characterization, and developmental expression. Arch Biochem Biophys 455:1–9
  • Yasuda S, Yasuda T, Hui Y, et al. (2009a). Concerted action of the cytosolic sulfotransferase, SULT1A3, and catechol-O-methyltransferase in the metabolism of dopamine in SK-N-MC human neuroblastoma cells. Neurosci Res 64:273–279
  • Yasuda T, Yasuda S, Williams FE, et al. (2008). Characterization and ontogenic study of novel steroid-sulfating SULT3 sulfotransferases from zebrafish. Mol Cell Endocrinol 294:29–36
  • Yen PM. (2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142
  • Ying GG, Williams B, Kookana R. (2002). Environmental fate of alkylphenols and alkylphenol ethoxylates – a review. Environ Int 28:215–226
  • Yokota H, Tsuruda Y, Maeda M, et al. (2000). Effect of bisphenol a on the early life stage in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 19:1925–1930

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.