1,410
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer’s disease

, , &
Pages 207-223 | Received 11 Oct 2013, Accepted 08 Jan 2014, Published online: 05 Feb 2014

References

  • Abramov AY, Ionov M, Pavlov E, Duchen MR. (2011). Membrane cholesterol content plays a key role in the neurotoxicity of β-amyloid: implications for Alzheimer’s disease. Aging Cell 10:595–603
  • Abu-Hamad S, Arbel N, Calo D, et al. (2009). The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916
  • Adamcik J, Jung J-M, Flakowski J, et al. (2010). Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol 5:423–428
  • Ahyayauch H, Raab M, Busto JV, et al. (2013). Binding of β-amyloid (1–42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: Modeling and experimental studies. Biophys J 103:453–463
  • Allsop D, Landon M, Kidd M. (1983). The isolation and amino acid composition of senile plaque core protein. Brain Res 259:348–352
  • Alzheimer A. (1907). Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin 64:146–148
  • Ambroggio EE, Kim DH, Separovic F, et al. (2005). Surface behaviour and lipid interaction of Alzheimer beta-amyloid peptide 1-42: A membrane-disrupting peptide. Biophys J 88:2706–2713
  • Antzutkin ON, Balbach JJ, Leapman RD, et al. (2000). Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils. PNAS 97:13045–13050
  • Arispe N, Rojas E, Pollard HB. (1993). Alzheimer disease amyloid β protein forms calcium channels in bilayer membranes: Blockade by tromethamine and aluminum. PNAS 90:567–571
  • Arispe N, Doh M. (2002). Plasma membrane cholesterol controls the cytotoxicity of Alzheimer's disease Abeta (1-40) and (1-42) peptides. FASEB 16:1526–1536
  • Arispe N. (2004). Architecture of the Alzheimer’s abeta ion channel pore. J Mem Biol 197:33–48
  • Bartzokis G. (2004). Age-related myelin breakdown: A developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25:5–18
  • Bay DC, Court DA. (2002). Origami in the outer membrane: the transmembrane arrangement of mitochondrial porins. Biochem Cell Biol 80:551–562
  • Behl C, Davis JB, Lesley R, Schubert D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827
  • Benoit M, Gabriel D, Gerisch G, Gaub HE. (2000). Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol 2:313–317
  • Berhanu WM, Hansmann UH. (2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS ONE 7:e41479
  • Berthelot K, Cullin C, Lecomte S. (2013). What does make an amyloid toxic: Morphology, structure or interaction with membrane? Biochimie 95:12–19
  • Binning G, Quate CF, Gerber C. (1986). Atomic force microscope. Phys Rev Let 56:930–933
  • Bitan G, Kirkitadze MD, Lomakin A, et al. (2003). Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. PNAS 100:330–335
  • Blackley HK, Patel N, Davies MC, et al. (1999). Morphological development of β(1-40) amyloid fibrils. Exp Neurology 158:437–443
  • Blackley HK, Sanders GH, Davies MC, et al. (2000). In-situ atomic force microscopy study of beta-amyloid fibrillization. J Mol Biol 298:833–840
  • Bokvist M, Lindstrom, F, Watts A, Grobner, G. (2004). Two types of Alzheimer’s b-amyloid (1–40) peptide membrane interactions: Aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049
  • Bonn M, Roke S, Berg O, et al. (2004). A vibrational study of cholesterol–lipid interactions in a monolayer: A molecular view of condensation. Phys Chem B 108:19083–10985
  • Brown CL, Aksay IA, Saville DA, Hecht MH. (2002). Template-directed assembly of a de novo designed protein. J Am Chem Soc 124:6846–6848
  • Bucciantini M, Giannoni E, Chiti F, et al. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511
  • Buchsteiner A, Hauβ T, Dencher N. (2012). Influence of amyloid-b peptides with different lengths and amino acid sequences on the lateral diffusion of lipids in model membranes. Soft Matter 8:424–429
  • Buell AK, Dhulesia A, White DA, et al. (2012). Detailed analysis of the energy barriers for amyloid fibril growth. Angew Chemie 51:5247–5251
  • Burke KA, Yates EA, Legleiter J. (2013). Amyloid-forming proteins alter the local mechanical properties of lipid membranes. Biochemistry 525:808–817
  • Bush AI, Tanzi RE. (2008). Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5:421–432
  • Butterfield DA, Yatin SM, Varadarajan S, Koppal, T. (1999). Amyloid beta-peptide-associated free radical oxidative stress, neurotoxicity, and Alzheimer’s disease. Methods Enzymol 309:746–768
  • Cadenhead, G. (1985). Structure and properties of cell membranes. Boca Raton (FL): CRC Press
  • Campioni S, Mannini B, Zampagni M, et al. (2010). A causative link between the the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol 6:140–147
  • Casadio R, Jacoboni I, Messina A, De Pinto V. (2002). A 3D model of the voltage-dependent anion channel (VDAC). FEBS Lett 520:1–7
  • Cecchi C, Nichino D, Zampagni M, et al. (2009). A protective role for lipid raft cholesterol against amyloid-induced membrane damage in human neuroblastoma cells. Biochim Biophys Acta 1788:2204–2216
  • Chiti F, Dobson CM. (2006). Protein misfolding, functional amyloid, and human disease. Annual Rev Biochem 75:333–366
  • Choo-Smith LP, Garzon-Rodriguez W, Glabe CG, Surewicz WK. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272:22987–22990
  • Choucair A, Chakrapani M, Chakravarthy B, et al. (2007). Preferential accumulation of Abeta(1-42) on gel phase domains of lipid bilayers: an AFM and fluorescence study. Biochem Biophys Acta 1768:146–154
  • Connolly MR, Smith CG. (2010). Nanoanalysis of graphene layers using scanning probe techniques. Phil Trans Roy Soc London A 368:5379–5389
  • Cordy JM, Hooper NM, Turner AJ. (2006). The involvement of lipid rafts in Alzheimer’s disease. Mol Memb Biol 23:111–122
  • Crespo R, Rocha FA, Damas AM, Martins PM. (2012). A generic crystallization-like model that describes the kinetics of amyloid fibril formation. J Biol Chem 287:30585–30594
  • Dahlgren KN, Manelli AM, Stine WB, et al. (2002). Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053
  • Dante S, Hauβ T, Dencher NA. (2006). Cholesterol inhibits the insertion of the Alzheimer’s peptide Ab(25–35) in lipid bilayers. Eur Biophys J 35:523–531
  • Davinelli S, Intrieri M, Russo C, et al. (2011). The “Alzheimer’s disease signature”: potential perspectives for novel biomarkers. Immun Aging 8:7–17
  • De Meyer G, Shapiro F, Vanderstichele H, et al. (2010). Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Arch Neuro 67:949–956
  • Demel RA, De Kruyff B. (1976). The function of sterols in membranes. Biochim Biophys Acta 457:109–132
  • Dobson CM. (2001). The structural basis of protein folding and its links with human disease. Phil Trans Roy Soc London B 356:133–145
  • Dobson CM, Karplus M. (1999). The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struc Biol 9:92–101
  • Drolle E, Gaikwad R, Leonenko Z. (2012). Nanoscale electrostatic domains in cholesterol-laden lipid membranes create a target for amyloid binding. Biophys J 103:L27–L29
  • Dyrks T, Dyrks E, Masters CL, Beyreuther K. (1993). Amyloidogenicity of rodent and human beta A4 sequences. FEBS Lett 324:231–236
  • Ege C, Majewski J, Wu G, et al. (2005). Templating effect of lipid membranes on Alzheimer’s amyloid beta peptide. Chemphyschem 6:226–229
  • Esparza TJ, Zhao H, Cirrito JR, et al. (2013). Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 73:104–119
  • Farooqui AA, Liss L, Horrocks LA. (1988). Neurochemical aspects of Alzheimer's disease: Involvement of membrane phospholipids. Metab Brain Dis 3:19–35
  • Farooqui AA, Wells K, Horrocks LA. (1995). Breakdown of membrane phospholipids in Alzheimer disease. Mol Chem Neuropathol 25:155–173
  • Fassbender K, Masters C, Beyreuther, K. (2001). Alzheimer's disease: Molecular concepts and therapeutic targets. Naturwissenschaften 88:261–267
  • Finot E, Leonenko Y, Moores B, et al. (2010). Effect of cholesterol on electrostatics in lipid-protein films of a lung surfactant. Langmuir 26:1929–1935
  • Geng J, Zhao C, Ren J, Qu X. (2010). Alzheimer’s disease amyloid beta converting left-handed Z-DNA back to right-handed B-form. Chem Comm 46:7187–7189
  • Giacomelli CE, Norde W. (2005). Conformational changes of the amyloid β-peptide (1-40) adsorbed on solid surfaces. Macromol Biosci 5:401–407
  • Giordani C, Wakai C, Yoshida K, et al. (2008). Cholesterol location and orientation in aqueous suspension of large unilamellar vesicles of phospholipid revealed by intermolecular nuclear Overhauser effect. J Phys Chem B 112:2622–2628
  • Glenner GG, Wong CW. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890
  • Goldsbury C, Kistler J, Aebi U, et al. (1999). Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol 285:33–39
  • Gorbenko G, Kinnunen P. (2006). The role of lipid–protein interactions in amyloid-type protein fibril formation. Chem Phys Lipids 141:72–82
  • Greenough MA, Camakaris J, Bush AI. (2012). Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555
  • Gunasekara L, Schurch S, Schoel W, et al. (2005). Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochim Biophys Acta 1737:27–35
  • Hammarström P, Ali MM, Mishra R, et al. (2008). A catalytic surface for amyloid fibril formation. J Phys: Conf Ser 100:052039. doi:10.1088/1742-6596/100/5/052039
  • Hane F, Drolle E, Gaikwad R, et al. (2011). Amyloid-β aggregation on model lipid membranes: An AFM study. J Alz Dis 26:485–494
  • Hane F, Tran G, Attwood SJ, Leonenko Z. (2013). Cu2+ affects amyloid-β (1-42) aggregation by increasing peptide-peptide binding forces. PLoS ONE 8:e59005 . DOI: 10.1371/journal.pone.0059005
  • Hansma HG, Hoh JH. (1994). Biomolecular imaging with the atomic force microscope. Ann Rev Biophys Biomol Struct 23:115–140
  • Hardy J, Allsop D. (1991). Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388
  • Harper JD, Lieber CM, Lansbury Jr PT. (1997). Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein. Chem Biol 4:951–959
  • Harper JD, Lansbury PT Jr. (1997). Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Ann Rev Biochem 66:385–407
  • Hinterdorfer P, Dufrene Y. (2006). Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355
  • Ionov M, Klajnert B, Gardikis K, et al. (2010). Effect of amyloid beta peptides Aβ1–28 and Aβ25–40 on model lipid membranes. J Therm Anal Calorim 99:741–747
  • Irwin JA, Wong HE, Inchan K. (2013). Different fates of Alzheimer’s disease amyloid-β fibrils remodeled by biocompatible small molecules. Biomacromolecules 14:264–274
  • Jang H, Arce FT, Ramachandran S, et al. (2010). Truncated β-amyloid peptide channels provide an alternative mechanism for Alzhiemer’s disease and Down syndrome. PNAS 107:6538–6543
  • Jang H, Arce FT, Mustata M, et al. (2011). Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link. Biophys J 100:1775–1783
  • Jang H, Connelly L, Arce FT, et al. (2013). Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane. Chem Theory Comput 9:822–833
  • Ji SR, Wu Y, Sui, SF. (2002). Study of beta-amyloid peptide (Abeta40) insertion into phosphlipid membranes using monolayer technique. Biochem (Mosc) 67:1283–1288
  • JPK Instruments. (2005). The NanoWizard AFM Handbook, Version 1.3:3. Available from: www.jpk.com, tutorials
  • Kagan BL, Hirakura Y, Azimov, R, et al. (2002). The channel hypothesis of Alzheimer’s disease: Current status. Peptides 23:1311–1315
  • Kakio A, Nishimoto S, Yanagisawa K, et al. (2002). Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: Importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41:7385–7890
  • Kakio A, Nishimoto S, Kozutsumi Y, Matsuzaki, K. (2003). Formation of membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys Res Commun 303:514–518
  • Kayed R, Head E, Thompson JL, et al. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489
  • Kayed R, Sokolov Y, Edmonds B, et al. (2004). Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366
  • Kayed R, Pensalfini A, Margol L, et al. (2009). Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284:4230–4237
  • Kinnunen PKJ. (2009). Amyloid formation on lipid membrane surfaces. Open Biol J 2:163–175
  • Knopman DS, DeKosky ST, Cummings JL, et al. (2001). Practice parameter: Diagnosis of dementia (an evidence-based review). Neurology 56:1143–1153
  • Kojro E, Gimpl G, Lammich S, et al. (2001). Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. PNAS 98:5815–5820
  • Koudinov AR, Berezov TT, Koudinova NV. (1998). Alzheimer’s amyloid beta and lipid metabolism: A missing link? FASEB J 12:1097–1099
  • Kowalewski T, Holtzman DM. (1999). In situ atomic force microscopy study of Alzheimer's β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formation. Proc Natl Acad Sci USA 96:3688–3693
  • Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM. (2000). Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318
  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, et al. (1996). Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081
  • Kusomoto Y, Lomakin A, Teplow DB, Benedek GB. (1998). Temperature dependence of amyloid β-protein fibrillization. PNAS 95:12277–12282
  • Lal R, Arnsdorf MF. (2010). Multidimensional atomic force microscopy for drug discovery: A versatile tool for defining targets, designing therapeutics and monitoring their efficacy. Life Sci 86:545–562
  • Lansbury PT Jr. (1997). Inhibition of amyloid formation: A strategy to delay the onset of Alzheimer’s disease. Curr Opin Chem Biol 1:260–267
  • Leonenko Z, Rodenstein M, Döner J, et al. (2006). The electrical surface potential of pulmonary surfactant. Langmuir 22:10135–10139
  • Levine H III. (1995). Soluble multimeric Alzheimer beta(1-40) pre-amyloid complexes in dilute solution. Neurobiol Aging 16:755–764
  • Lin H, Bhatia R, Lal R. (2001). Amyloid β protein forms ion channels: implications for Alzheimer’s diseases pathophysiology. FASEB J 15:2433–2444
  • Lingwood D, Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science 327:46–50
  • Linse S, Cabaleiro-Lago C, Xue W, et al. (2007). Nucleation of protein fibrillation by nanoparticles. PNAS 104:8691–8696
  • Lipowski R. (1995).Structure and dynamics of membranes – From cells to vesicles 1–65. North-Holland, Amsterdam: Elsevier
  • Loo DT, Copani A, Pike CJ, et al. (1993). Apoptosis is induced by β-amyloid in cultured central nervous system neurons. PNAS 90:7951–7955
  • Maltseva E, Kerth A, Blume A, et al. (2005). Adsorption of amyloid β (1–40) peptide at phospholipid monolayers. ChemBioChem 6:1817–1824
  • Masters CL, Simms G, Weinman NA, et al. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. PNAS 82:4245–4249
  • Mastrangelo IA, Ahmed M, Sato T, et al. (2006). High-resolution atomic force microscopy of soluble Abeta42 oligomers. J Mol Biol 358:106–119
  • Mattson MP. (2004). Pathways towards and away from Alzheimer’s disease. Nature 430:631–639
  • McMasters MJ, Hammer RP, McCarley RL. (2005). Surface-induced aggregation of beta amyloid peptide by co-substituted alkanethiol monolayers supported on gold. Langmuir 21:4464–4470
  • McMullen TPW, Lewis RNAH, McElhaney, RN. (2004). Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Cur Opin Colloid Interface Sci 8:459–468
  • Moores B, Drolle E, Attwood SJ, et al. (2011). Effect of surfaces on amyloid fibril formation. PLoS ONE 6:e25954
  • Muller WE, Eckert GP, Scheuer K, et al. (1998). Effects of beta-amyloid peptides on the fluidity of membranes from frontal and parietal lobes of human brain. High potencies of A beta 1-42 and A beta 1-43. Amyloid 5:10–15
  • Mutisya EM, Bowling AC, Beal MF. (1994). Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease. J Neurochem 63:2179–2184
  • Norlin N, Hellberg M, Filippov A, et al. (2012). Aggregation and fibril morphology of the Arctic mutation of Alzheimer’s Aβ peptide by CD, TEM, STEM and in situ AFM. J Struct Biol 180:174–189
  • O’Brien RJ, Wong PC. (2011). Amyloid precursor protein processing and Alzheimer’s disease. Ann Rev Neurosci 34:185–204
  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte J. (2002). Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97
  • Ono K, Condron MM, Teplow DB. (2009). Structure-neurotoxicity relationships of amyloid beta-protein oligomers. PNAS 106:14745–14750
  • Paravastu A, Leapman R, Yau W, Tycko R. (2008). Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. PNAS 105:18349–18354
  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R. (2005). Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307:262–265
  • Poojari C, Kukol A, Strodel B. (2013). How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochim Biophys Acta Biomem 1828:327–339
  • Powers ET, Kelly JW. (2001). Medium-dependent self-assembly of an amphiphilic peptide: direct observation of peptide phase domains at the air-water interface. J Am Chem Soc 123:775–776
  • Pronchik J, He X, Giurleo JT, Talaga DS. (2010). In vitro formation of amyloid from alpha-synuclein is dominated by reactions at hydrophobic interfaces. J Am Chem Soc 132:9797–9803
  • Pannuzzo M, Milardi D, Raudino A, et al. (2013). Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: Towards a unifying description of conformational transitions, oligomerization and membrane damage. Phys Chem Chem Phys 15:8940–8951
  • Qin Z, Hu D, Zhu M, Fink AL. (2007). Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation. Biochemistry 46:3521–3531
  • Qiu L, Buie C, Reay A, et al. (2011). Molecular dynamics simulations reveal the protective role of cholesterol in beta-amyloid protein-induced membrane disruptions in neuronal membrane mimics. J Phys Chem B 115:9795–9812
  • Quist A, Doudevski I, Lin H, et al. (2005). Amyloid ion channels: A common structural link for protein-misfolding disease. PNAS 102:10427–10432
  • Quist A, Chand A, Ramachandran S, et al. (2007). Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: Lab-on-a-chip system for lipid membranes and ion channels. Langmuir 23:1375–1380
  • Radmacher M. (2007). Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372
  • Rauk A. (2009). The chemistry of Alzheimer’s disease. Chem Soc Rev 38:2698–2715
  • Refolo L, Malester B, LaFrancois J, et al. (2000). Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331
  • Relini A, Cavalleri O, Rolandi R, Gliozzi A. (2009). The two-fold aspect of the interplay of amyloidogenic proteins with lipid membranes. Chem Phys Lip 158:1–9
  • Ridgley DM, Barone JR. (2013). Evolution of the amyloid fiber over multiple length scales. ACS Nano 7:1006–1015
  • Rocha S, Krastev R, Thunemann AF, et al. (2005). Adsorption of amyloid β-peptide at polymer surfaces: a neutron reflectivity study. Chemphyschem 6:2527–2534
  • Roher AE, Chaney MO, Kuo YM, et al. (1996). Morphology and toxicity of Abeta-(1-42) dimer derived from neurotic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271:20631–20635
  • Ryan T, Friedhube A, Lind M, et al. (2012). Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of alzheimer disease peptide A-beta 1–42. J Biol Chem 287:16947–16954
  • Sabaté R, Espargaró A, Barbosa-Barros, L, et al. (2012). Effect of the surface charge of artificial model membranes on the aggregation of amyloid beta-peptide. Biochimie 94:1730–1738
  • Sasahara K, Morigaki K, Shinya K. (2013). Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure. Phys Chem Chem 15:8929–8939
  • Sayre LM, Perry G, Smith MA. (1999). Redox metals and neurodegenerative disease. Curr Opin Chem Biol 3:220–225
  • Segers-Nolten I, van der Werf K, van Raaij M, Subramaniam V. (2007). Quantitative characterization of protein nanostructures using atomic force microscopy. Conf Proc IEEE Eng Med Biol Soc 2007:6609–6612
  • Selkoe DJ. (1980). Altered protein composition of isolated human cortical neurons in Alzheimer disease. Ann Neurol 8:468–478
  • Selkoe DJ. (1991). The molecular pathology of Alzheimer’s disease. Neuron 6:487–498
  • Sepulveda J, Parodi RW, Peoples C, et al. (2010). Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS ONE 5:e11820
  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. (2011). Neuropathological alternation in Alzheimer disease. Cold Spring Harbor Perspect Med 1:a006189 . doi: 10.1101/cshperspect.a006189
  • Sharp JS, Forrest JA, Jones RA. (2002). Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces. Biochemistry 41:15810–15819
  • Sheikh K, Giordani C, McManus J, et al. (2012). Differing modes of interaction between monomeric Aβ 1–40 peptides and model lipid membranes: An AFM study. Chem Phys Lipids 165:142–150
  • Shen L, Adachi T, Bout DV, Zhu X. (2012). A mobile precursor determines amyloid-β peptide fibril formation at interfaces. J Am Chem Soc 134:14172–14178
  • Shulga N, Wilson-Smith R, Pastorino JG. (2009). Hexokinase II detachment from the mitochondria potentiates cisplatin induced cytotoxicity through a caspase-2 dependent mechanism. Cell Cycle 8:3355–3364
  • Sipe JD, Benson MD, Buxbaum JN, et al. (2010). Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17:101–104
  • Soscia SJ, Kirby JE, Washicosky KJ, et al. (2010). The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS ONE 5:e5905
  • Sokolov Y, Kozak JA, Kayed R, et al. (2006). Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647
  • Stefani M. (2012). Structural features of cytotoxicity of amyloid oligomers: Implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99:226–245
  • Stine WB, Snyder SW, Ladror US, et al. (1996). The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J Protein Chem 15:193–203
  • Stine WB, Dahlgren KN, Krafft GA, LaDu MJ. (2002). In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622
  • Tanzi RE, McClatchey AI, Lamperti ED, et al. (1988). Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331:528–530
  • Terzi E, Holzemann G, Seelig J. (1995). Self-association of beta-amyloid peptide (1-40) in solution and binding to lipid membranes. J Mol Biol 252:633–642
  • Thinnes FP, Gotz H, Kayser H, et al. (1989). Identification of human porins. I. Purification of a porin from human B-lymphocytes (Porin 31HL) and the topochemical proof of its expression on the plasmalemma of the progenitor cell. Biol Chem Hoppe-Seyler 370:1253–1264
  • Tofoleanu F, Buchete NV. (2012). Alzheimer Aβ peptide interactions with lipid membranes: Fibrils, oligomers and polymorphic amyloid channels. Prion 6:339–345
  • Uversky VN, Li J, Fink AL. (2001). Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744
  • Verdier Y, Penke B. (2004). Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer’s disease. Curr Protein Peptide Sci 5:19–31
  • Walsh DM, Klyubin I, Fadeeva JV, et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539
  • Walsh DM, Selkoe DJ. (2004). Oligomers on the brain: The emerging role of soluble protein aggregates in neurodegeneration. Protein Peptide Lett 11:213–228
  • Wang Q, Walsh DM, Rowan MJ, et al. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24:3370–3378
  • Wang Q, Zhao J, Yu Z, et al. (2010). Alzheimer Abeta(1-42) monomer adsorbed on the self-assembled monolayers. Langmuir 26:12722–12732
  • Wang Z, Zhou C, Wang C, et al. (2003). AFM and STM study of β-amyloid aggregation on graphite. Ultramicroscopy 97:73–79
  • Wells K, Farooqui AA, Liss L, Horrocks LA. (1995). Neural membrane phospholipids in Alzheimer’s disease. Neurochem Res 20:1329–1333
  • Williams T, Johnson B, Urbanc B, et al. (2011). Aβ42 oligomers, but not fibrils, simultaneously bind to and cause damage to ganglioside-containing lipid membranes. Biochem J 439:67–77
  • Williamson R, Usardi A, Hanger D, Anderton, B. (2008). Membrane-bound β-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 22:1552–1559
  • Yamaguchi T, Yagi H, Goto Y, et al. (2010). A disulfide-linked amyloid-β peptide dimer forms a protofibril-like oligomer through a distinct pathway from amyloid fibril formation. Biochemistry 49:7100–7107
  • Yanagisawa K, Odaka A, Suzuki N, Ihara Y. (1995). GM1 ganglioside-bound amyloid beta-protein (A beta): A possible form of preamyloid in Alzheimer’s disease. Nature Med 1:1062–1066
  • Yang T, Hong S, O’Malley T, et al. (2013). New ELISAs with high specificity for soluble oligomers of amyloid β-protein detect natural Aβ oligomers in human brain but not CSF. Alzheimer’s Dementia 9:99–112
  • Yip CM, Elton EA, Darabie AA, et al. (2001). Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol 311:723–734
  • Yokoyama K, Welchons DR. (2007). The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces. Nanotechnology 18:105101
  • Yu X, Wang Q, Lin Y, et al. (2012). Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite. Langmuir 28:6595–6605
  • Yu X, Zheng J. (2012). Cholesterol promotes the interaction of Alzheimer β-amyloid monomer with lipid bilayer. J Mol Biol 421:561–571
  • Zampagni M, Evangelisti E, Cascella R, et al. (2010). Lipid rafts are primary mediators of amyloid oxidative attack on plasma membrane. J Mol Med 88:597–608
  • Zerweck U, Loppacher C, Otto T, et al. (2005). Accuracy and resolution limits of Kelvin probe force microscopy. Phys Rev B 71:125424–125433
  • Zhao L, Long H, Mu Y, Yue Chew L. (2012). The toxicity of amyloid-beta oligomers. Int J Mol Sci 13:7303–7327
  • Zhu M, Souillac PO, Ionescu-Zanetti C, et al. (2002). Surface-catalyzed amyloid fibril formation. J Biol Chem 277:50914–50922

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.