54
Views
47
CrossRef citations to date
0
Altmetric
Research Article

The MPTP Story: Mao Activates Tetrahydropyridine Derivatives to Toxins Causing Parkinsonism

, , , &
Pages 291-332 | Published online: 22 Sep 2008

References

  • Tretiakoff C. 1919, Contribution à lètude de ľanatomie pathologique du locus niger de Soemmering avec quelques déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson, Thèse de Paris
  • Hassler R. “Zur Pathologie der Paralysis Agitans und des postenzephalitischen Parkinsonismus”. J. Psychol. Neurol 1938; 48: 387–476
  • Greenfield J. G., Bosanquet F. D. “The brain-stem lesions in parkinsonism”. J. Neurol. Neurosurgery Psychiatry 1953; 16: 213–226
  • Ehringer H., Hornykiewicz O. “Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen System”. Klinische Wochenschrift 1960; 38: 1238–1239
  • Bernheimer H., Birkmayer W., Hornykiewicz O. “Zur Biochemie des Parkinsonsyndroms des Menschen”. Klinische Wochenschrift 1963; 41: 564–569
  • Bernheimer H., Hornykiewicz O. “Herabgesetzte Konzentration der Homovanillinsäure im Gehirn von Parkinsonkranken Menschen als Ausdruck der Storung des Zentralen Dopaminstoffwechsel”. Klinische Wochenschrift 1965; 43: 711–715
  • Jenner P. Clues to the mechanism underlying dopamine cell death in Parkinson's disease. J. Neurol. Neurosurgery Psychiatry 1989; 22–28, Special Suppl.
  • Jenner P. MPTP-induced parkinsonism: the relevance to idiopathic Parkinson's disease. Disorders of movement, N. Quinn, P. Jenner. Academic Press, London 1989; 157–175
  • Duvoisin R. C. The cause of Parkinson's disease. Neurology 2, Movement Disorders, C. D. Marsden, S. Fahn. Butterworth Scientific, London 1981; 8–24
  • Calne D. B., Langston J. W. Aetiology of Parkinson's disease. Lancet 1983; ii: 1457–1459
  • Duvoisin R. C., Eldridge R., Williams A., Nutt J., Calne D. Twin study of Parkinson disease. Neurology 1981; 31: 77–80
  • Tanner C. M. “The role of environmental toxins in the aetiology of Parkinson's disease”. Trends Neurol. Sci. 1989; 12: 49–54
  • Barbeau A., Cloutier T., Roy M., Plasse L., Paris S., Poirier J. Ecogenetics of Parkinson's disease: 4-hydroxylation of debrisoquine. Lancet 1985; ii: 1213–1216
  • Poirier J., Roy M., Campanella G., Cloutier T., Paris S. Debrisoquine metabolism in parkinsonian patients treated with antihistamine drugs. Lancet 1987; i: 386
  • Cornelia C. L., Tanner C. M., Goetz C. G., Gans S., Rapp D., Fischer J. Debrisoquine metabolism in Parkinson's disease. Neurol. 1987; 37: 261–262, Suppl. 1
  • Makino Y., Ohta S., Tachikawa O., Hirobe M. “Presence of tetrahydroisoquinoline and 1-methyl-tetrahydro-isoquinoline in foods: compounds related to Parkinson's disease”. Life Sci. 1988; 43: 373–378
  • Waring R. H., Steventon G. B., Sturman S. G., Heafield M. T. E., Smith M. C. G., Williams A. C. S-methylation in motorneuron disease and Parkinson's disease. Lancet 1989; i: 356–357
  • Steventon G. B., Heafield M. T. E., Waring R. H., Williams A. C. Xenobiotic metabolism in Parkinson's disease. Neurology 1989; 39: 883–887
  • Nefzeger M. D., Quadfasel F. A., Karl A. A retrospective study of smoking in Parkinson's disease. Am. J. Epidemiol 1968; 88: 149–158
  • Kessler I. I., Diamond K. L. “Epidemiological studies of Parkinson's disease: I. Smoking and Parkinson's disease”. Am. J. Epidemiol. 1971; 94: 16–25
  • Bauman R. J., Jameson H. D., Weisberg L. H., McKean H. E., Haack D. G. Cigarette smoking and Parkinson's disease. Neurology 1980; 30: 839–843
  • Perry T. L., Godin D. V., Hansen S. Parkinson's disease: A disorder due to nigral glutathione deficiency?. Neurosci. Lett. 1982; 33: 305–310
  • Perry T. L., Yong V. W. Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci. Lett. 1986; 67: 269–274
  • Bannon M. J., Goedert M., Williams B. The possible relation of glutathione, melanin and l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) to Parkinson's disease. Biochem. Pharmacol 1984; 33: 2697–2698
  • Graham D. G. “Oxidative pathways for catecholamine in the genesis of neuromelanin and cytotoxic quinones”. Mol Pharmacol 1978; 14: 633–643
  • Pawelek J. M., Lerner A. B. 5,6-Dihydroxyindole is a melanin precursor showing potent cytotoxicity. Nature 1978; 276: 627–628
  • Marsden C. D. “Neuromelanin and Parkinson's disease”. J. Neural. Trans., Suppl 1983; 19: 121–141
  • Blin J., Bonnet A.-M., Agid Y. Does levodopa aggravate Parkinson's disease?. Neurology 1988; 38: 1410–1416
  • Davis G. C., Williams A. C., Markey S. P., Ebert M. H., Caine E. D., Reichert C. M., Kopin I. J. “Chronic Parkinsonism secondary to intravenous injection of meperidine analogues”. Psychiatry Res. 1979; 1: 249–254
  • Langston J. W., Ballard P., Tetrud J. W., Irwin I. “Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis”. Science 1983; 219: 979–980
  • Ballard P. A., Langston J. W., Tetrud J., Burns R. S. Chemically induced chronic parkinsonism in young adults: clinical and neuropharmacologic aspects. Neurology 1983; 33: 90, Suppl. 2
  • Langston J. W., Ballard P. Parkinsonism induced by l-methyl-4- phenyl-1,2,3,6-tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson's disease. Canad. J. Neurol. Sci. 1984; 11: 160–165
  • Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., Kopin I. J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 1983; 80: 4546–4550
  • Kolata G. Monkey model of Parkinson's disease. Science 1983; 220: 705
  • Langston J. W., Forno L. S., Rebert C. S., Irwin I. Selective nigral toxicity after systematic administration of l-methyl-4-phenyl-1,2,5,6- tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res. 1984; 292: 390–394
  • Forno L. S., Langston J. W., DeLanney L. E., Irwin I., Ricaurte G. A. “Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys”. Ann. Neurol 1986; 20: 449–455
  • Forno L. S., Langston J. W., DeLanney L. E., Irwin I. “An electron microscopic study of MPTP-induced inclusion bodies in an old monkey”. Brain Res. 1988; 448: 150–157
  • Miyoshi R., Kito S., Ishida H., Katayama S. Alterations of the central noradrenergic system in MPTP-induced monkey parkinsonism. Res. Commun. Chem. Pathol. Pharmacol. 1988; 62: 93–102
  • Pifl C., Schingnitz G., Homykiewicz O. “The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinson's disease”. Neurosci. Lett. 1988; 92: 228–233
  • Markey S. P., Johannessen J. N., Chiueh C. C., Burns R. S., Herkenham M. A. “Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism”. Nature 1984; 311: 464–467
  • Langston J. W., Irwin I., Langston E. B., Forno L. S. 1-Methyl-4-phenylpyridinium ion (MPP+): Identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci. Lett. 1984; 48: 87–92
  • Heikkila R. E., Manzino L., Cabbat F. S., Duvoisin R. C. Protection against the dopaminergic neurotoxicity of l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311: 467–469
  • Chiba K., Trevor A, Castagnoli N., Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem. Biophys. Res. Commun. 1984; 120: 574–578
  • Chiba K., Peterson L. A., Castagnoli K. P., Trevor A. J., Castagnoli N., Jr. Studies on the molecular mechanism of bioactivation of the selective nigrostriatal toxin l-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. Drug. Metab. Dispos. 1985; 13: 342–347
  • Kindt M. V., Youngster S. K., Sonsalla P. K., Duvoisin R. C., Heikkila R. E. Role for monoamine oxidase-A (MAO-A) in the bioactivation and nigrostriatal dopaminergic neurotoxicity of the MPTP analog, 2′-Me-MPTP. Eur. J. Pharmacol 1988; 146: 313–318
  • Heikkila R. E., Kindt M. V., Sonsalla P. K., Giovanni A., Youngster S. K., McKeown K. A., Singer T. P. Importance of monoamine oxidase A in the bioactivation of neurotoxic analogs of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 1988; 85: 6172–6176
  • Javitch J. A., d'Amato R. J., Strittmatter S. M., Snyder S. H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 1985; 82: 2173–2177
  • Chiba K., Trevor A. J., Castagnoli N., Jr. Active uptake of MPP+, a metabolite of MPTP, by brain synaptosomes. Biochem. Biophys. Res. Commun. 1985; 128: 1228–1232
  • Naoi M., Suzuki H., Kiuchi K., Takahashi T., Nagatsu T. Effect of N-methyl-4-phenylpyridinium ion on monoamine oxidase in a clonal rat pheochromocytoma cell line, PC12h. J. Neurochem. 1987; 48: 1912–1916
  • Takahashi T., Naoi M., Nagatsu T. Uptake of N-methyl-4-phenylpyridinium ion (MPP+) into PC12h pheochromocytoma cells. Neurochem. Int. 1987; 11: 89–93
  • d'Amato R. J., Lipman Z. P., Snyder S. H. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin. Science 1986; 231: 987–989
  • d'Amato R. J., Benham D. F., Snyder S. H. Characterization of the binding of N-methyl-4-phenylpyridine, the toxic metabolite of the parkinsonian neurotoxin AT-methyl-4-phenyl-1,2,3,6-tetrahydropyri-dine, to neuromelanin. J. Neurochem. 1987; 48: 653–658
  • Mayer R. A., Kindt M. V., Heikkila R. E. Prevention of the nigrostriatal toxicity of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenylethylamine transport. J. Neurochem. 1986; 47: 1073–1079
  • Barnes N. J. G., Costall B., Naylor R. J. Is the dopamine uptake system required for MPTP to induce neurotoxicity in the primate brain?. Br. J. Pharmacol 1987; 90: 241P
  • Schultz W., Scarnati E., Sundström E., Tsutsumi T., Jonsson G. “The catecholamine uptake blocker nomifensine protects against MPTP-induced parkinsonism in monkeys”. Exp. Brain Res. 1986; 63: 216–220
  • Ramsay R. R., Singer T. P. Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J. Biol. Chem. 1986; 261: 7585–7587
  • Ramsay R. R., Dadgar J., Trevor A., Singer T. P. Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci. 1986; 39: 581–588
  • Ramsay R. R., Salach J. I., Singer T. P. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NADMinked substrates by MPP+. Biochem. Biophys. Res. Commun. 1986; 134: 743–748
  • Nicklas W. J., Vyas I., Heikkila R. E. Inhibition of NADH-linked oxidation in brain mitochondria by l-methyl-4-phenylpyridine, a metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-ridine. Life Sci. 1985; 36: 2503–2508
  • Vyas I., Heikkila R. E., Nicklas W. J. Studies on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyri-dinium. J. Neurochem. 1986; 46: 1501–1507
  • Singer T. P., Castagnoli N., Jr., Ramsay R. R., Trevor A. J. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,7. Neurochem. 1987; 49: 1–8
  • Poirier J., Barbeau A. 1-Methyl-4-phenyl-pyridinium-induced inhibition of nicotinamide adenosine dinucleotide cytochrome c reductase. Neurosci. Lett. 1985; 62: 7–11
  • Ramsay R. R., Salach J. I., Dadgar J., Singer T. P. “Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental idiopathic parkinsonism”. Biochem. Biophys. Res. Commun. 1986; 135: 269–275
  • Ramsay R. R., McKeown K. A., Johnson E. A., Booth R. G., Singer T. P. “Inhibition of NADH oxidation by pyridine derivatives”. Biochem. Biophys. Res. Commun. 1987; 146: 53–60
  • Ramsay R. R., Kowal A. T., Johnson M. K., Salach J. I., Singer T. P. The inhibition site of MPP+, the neurotoxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Arch. Biochem. Biophys. 1987; 259: 645–649
  • Rollema H., Kuhr W. G., Kranenborg G., de Vries J., van den Berg C. MPP+ -induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J. Pharmacol. Exp. Ther. 1988; 245: 858–866
  • Mizuno Y., Saitoh T., Sone N. “Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpy-ridinium ion”. Biochem. Biophys. Res. Commun. 1987; 143: 294–299
  • Mizuno Y., Suzuki K., Sone N., Saitoh T. Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Neurosci. Lett. 1987; 81: 204–208
  • Sanchez-Ramos J. R., Hollinden G. E., Stick T. J., Rosenthal M. 1-Methyl-4-phenylpyridinium (MPP+) increases oxidation of cytochrome-*) in rat striatal slices. Brain Res. 1988; 443: 183–189
  • Singer T. P., Ramsay R. R., McKeown K., Trevor A., Castagnoli N. E., Jr. Mechanism of the neurotoxicity of l-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology 1988; 49: 17–23
  • DiMonte D., Jewell S. A., Ekstrom G., Sandy M. S., Smith M. T. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenyl-pyridine (MPP+) cause rapid ATP depletion in isolated hepatocytes. Biochem. Biophys. Res. Commun. 1986; 137: 310–315
  • DiMonte D., Sandy M. S., Smith M. T. Increase efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem. Biophys. Res. Commun. 1987; 148: 153–160
  • Kass G. E. N., Wright J. W., Nicotera P., Orrenius S. The mechanism of 1-mefhyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch. Biochem. Biophys. 1988; 260: 789–797
  • Rossetti Z. L., Sotgiu A., Sharp D. E., Hadjiconstantinou M., Neff N. H. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem. Pharmacol. 1988; 37: 4573–4574
  • DiMonte D., Sandy M. S., Ekstrom G., Smith M. T. Comparatives studies on the mechanisms of paraquat and 1-methyl-4-phenyl-pyridine (MPP+) cytotoxicity. Biochem. Biophys. Res. Commun. 1986; 137: 303–309
  • Frank D. M., Arora P. K., Blumer J. L., Sayre L. M. Model study on the bioreduction of paraquat, MPP+, and analogs. Evidence against a “redox cycling” mechanism in MPTP neurotoxicity. Biochem. Biophys. Res. Commun. 1987; 147: 1095–1104
  • Sayre L. M., Arora P. K., Feke S. C., Urbach F. L. Mechanism of induction of Parkinson's disease by 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP). Chemical and electrochemical characterization of a geminal-dimethyl-blocked analogue of a postulated toxic metabolite. J. Am. Chem. Soc 1986; 108: 2464–2466
  • Linkous C. A., Schaich K. M., Forman A., Borg D. C. An electrochemical study of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its oxidation products. Bioelectrochemistry and Bioenergetics 1988; 19: 477–490, (a section of J. Electroanal. Chem. 253)
  • Castagnoli N., Jr., Chiba K., Trevor A. J. Potential bioactivation pathways for the neurotoxin 1-mefhyl-4-phenyl-1,2,3,6-tetrahydropy-ridine (MPTP). Life ScL 1985; 36: 225–230
  • Peterson L. A., Caldera P. S., Trevor A., Chiba K., Castagnoli N., Jr. Studies on the 1-methyl-4-phenyl-2,3-dihydropyridinium species 2,3-MPDP+, the monoamine oxidase catalyzed oxidation product of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J. Med. Chem. 1985; 28: 1432–1436
  • Trevor A. J., Castagnoli N., Jr., Caldera P., Ramsay R. R., Singer T. P. “Bioactivation of MPTP: Reactive metabolites and possible biochemical sequelae”. Life Sci. 1987; 40: 713–719
  • Chacón J. N., Chedekel M. R., Land E. J., Truscott T. G. Chemically induced Parkinson's disease II: Intermediates in the oxidation and reduction reactions of the 1-methyl-4-phenyl-2,3-dihydropyridinium ion and its deprotonated form. Biochem. Biophys. Res. Commun. 1989; 158: 63–71
  • Snyder S. H., d'Amato R. J. “Predicting Parkinson's disease”. Nature 1985; 317: 198–199
  • Snyder S. H., d'Amato R. J. “MPTP: A neurotoxin relevant to the pathophysiology of Parkinson's disease”. Neurology 1986; 36: 250–258
  • Arai Y., Kinemuchi H., Hamamichi N., Satoh N., Tadano T., Kisara K. Inhibition of rat brain monoamine oxidase by some analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and l-methyl-4-phenylpyridinium ion. Neurosci. Lett. 1986; 66: 43–48
  • Irwin I., Langston J. W., DeLanney L. E. 4-Phenylpyridine (4PP) and MPTP: The relationship between striatal MPP+ concentrations and neurotoxicity. Life Sci. 1987; 40: 731–740
  • Ansher S. S., Cadet J. L., Jakoby W. B., Baker J. K. Role of N-methyltransferases in the neurotoxicity associated with the metabolites of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and other 4-substituted pyridines present in the environment. Biochem. Pharmacol. 1986; 35: 3359–3363
  • Godin C. S., Crooks P. A. N-methylation as toxication route for xenobiotics. II. In vivo formation of NN′-dimethyl-4,4′-bipyridyl ion (Paraquat) from 4,4′-bipyridyl in the guinea pig. Drug Metab. Dispos. 1989; 17: 180–185
  • Perry T. L., Jones K., Hansen S., Wall R. A. 2-Phenylpyridine and 3-phenylpyridine, constituents of tea, are unlikely to cause idiopathic Parkinson's disease. J. Neurol. Sci. 1988; 85: 309–317
  • Perry T. L., Jones K., Hansen S., Wall R. A. 4-Phenylpyridine and three other analogues of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine lack dopaminergic nigrostriatal neurotoxicity in mice and marmosets. Neurosci. Lett. 1987; 75: 65–70
  • Suzuki K., Mizuno Y., Yoshida M. “Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline”. Biochem. Biophys. Res. Commun. 1989; 162: 1541–1545
  • Fuller R. W., Hemrick-Luecke S. K. Persistent depletion of striatal dopamine in mice by m-hydroxy-MPTP. Res. Commun. Chem. Pathol. Pharmacol. 1986; 53: 167–172
  • Zimmerman D. M., Cantrell B. E., Reel J. K., Hemrick-Luecke S. K., Fuller R. W. Characterization of the neurotoxic potential of m-methoxy-MPTP and the use of its N-ethyl analogue as a means of avoiding exposure to a possible parkinsonism-causing agent. J. Med. Chem. 1986; 29: 1517–1520
  • Fuller R. W., Hemrick-Luecke S. K. Persistent depletion of striatal dopamine and its metabolites in mice by TMMP, an analogue of MPTP. J. Pharm. Phamacol 1987; 39: 667–669
  • Fuller R. W., Hemrick-Luecke S. K. Depletion of heart norepinephrine in mice by some analogs of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Res. Commun. Chem. Pathol. Pharmacol 1987; 56: 147–156
  • Fuller R. W., Hemrick-Luecke S. K., Robertson D. W. Comparison of l-methyl-4-(p-chlorophenyl)-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and p-chloroampheta-mine as monoamine depletors. Res. Commun. Chem. Pathol. Pharmacol. 1985; 50: 57–65
  • Fuller R. W., Robertson D. W., Hemrick-Luecke S. K. Comparison of the effects of two 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs, 1-methyl-4-(2-thienyl)-1,2,3,6-tetrahydropyridine and 1-methyl-4-(3-thienyl)-1,2,3,6-tetrahydropyridine, on monoamine oxidase in vitro and on dopamine in mouse brain. J. Pharmacol. Exp. Ther. 1987; 240: 415–420
  • Markey S. P., Schmuff N. R. The pharmacology of the parkinsonian syndrome producing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and structurally related compounds. Med. Res. Rev. 1986; 6: 389–429
  • Gessner W., Brossi A., Shen R.-S., Abell C. W. Synthesis and dihydropteridine reductase inhibitory effects of potential metabolites of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Med. Chem. 1985; 25: 311–317
  • Hoppel C. L., Greenblatt D., Kwok H.-C., Arora P. K., Singh M. P., Sayre L. M. Inhibition of mitochondrial respiration by analogs of 4-phenylpyridine and 1-methyl-4-phenylpyridinium cation (MPP+), the neurotoxic metabolite of MPTP. Biochem. Biophys. Res. Commun. 1987; 148: 684–693
  • Finnegan K. T., Irwin I., DeLanney L. E., Ricaurte G. A., Langston J. W. 1,2,3,6-Tetrahydro-1-methyl-4-(methylpyrrol-2-yl)pyridine: Studies on the mechanism of action of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. J. Pharmacol. Exp. Ther. 1987; 242: 1144–1151
  • Heikkila R. E., Manzino L., Cabbat F. S., Duvoisin R. C. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and several of its analogues on the dopaminergic nigrostriatal pathway in mice. Neurosci. Lett. 1985; 58: 133–137
  • Youngster S. K., Duvoisin R. C., Hess A., Sonsalla P. K., Kindt M. V., Heikkila R. E. 1-Methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydropyridine (2′-CH3-MPTP) is a more potent dopaminergic neurotoxin than MPTP in mice. Eur. J. Pharmacol. 1986; 122: 283–287
  • Sonsalla P. K., Youngster S. K., Kindt M. V., Heikkila R. E. Characteristics of 1 -methyl-4-(2′-methylpheny 1)-1,2,3,6-tetrahydropy-ridine-induced neurotoxicity in the mouse. J. Pharmacol. Exp. Then 1987; 242: 850–857
  • Youngster S. K., Saari W. S., Heikkila R. E. 1-Methyl-4-cyclohexyl-1,2,3,6-tetrahydropyridine (MCTP): An alicyclic MPTP like neurotoxin. Neurosci. Lett. 1987; 79: 151–156
  • Fries D. S., de Vries J., Hazelhoff B., Horn A. S. Synthesis and toxicity towards nigrostriatal dopamine neurons of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) analogues. J. Med. Chem. 1986; 29: 424–427
  • Johannessen J. N., Savitt J. M., Markey C. J., Bacon J. P., Weisz A., Hanselman D. S., Markey S. P. “the development of amine substituted analogues of MPTP as unique tools for the study of MPTP toxicity and Parkinson's disease”. Life Sci. 1987; 40: 697–704
  • Riachi N. J., Arora P. K., Sayre L. M., Harik S. I. Potent neurotoxic fluorinated 1 -methyl-4-plienyl-1,2,3,6-tetrahydropyridine analogs as potential probes in models of Parkinson's disease. J. Neurochem. 1988; 50: 1319–1321
  • Testa B., Naylor R., Costall B., Jenner P., Marsden C. D. Does an endogenous methylpyridinium analogue cause Parkinson's disease?. J. Pharm. Pharmacol. 1985; 37: 679–680
  • Nagatsu T., Hirata Y. Inhibition of the tyrosine hydroxylase system by MPTP, 1-methyl-4-phenylpyridinium ion (MPP+) and the structurally related compounds in vitro and in vivo. Eur. J. Neurol. 1987; 26(Suppl. 1)11–15
  • Nagatsu T., Yoshida M. An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions. Neurosci. Lett. 1988; 87: 178–182
  • Sandler Carter M., Bonham S., Hunter K. R., Stern G. M. Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 1973; 241: 439–443
  • Collins M. A., Neafsey E. J. β-Carboline analogues of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): Endogenous factors underlying idiopathic Parkinsonism?. Neurosci. Lett. 1985; 55: 179–184
  • Ramsden D. B., Williams A. C. Production in nature of compounds resembling methylphenyltetrahydropyridine, a possible cause of Parkinson's disease. Lancet 1985; i: 215–216
  • Fellman J. H., Nutt J. N. MPTP-like molecules and Parkinson's disease. Lancet 1985; i: 924
  • Ohkubo S., Hirano T., Oka K. Methyltetrahydro-β-carbolines and Parkinson's disease. Lancet 1985; i: 1272–1273
  • Youngster S. K., Sonsalla P. K., Sieber B.-A., Heikkila R. E. Structure-activity study of the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. I. Evaluation of the biological activity of MPTP analogs. J. Pharmacol. Exp. Ther. 1989; 249: 820–828
  • Youngster S. K., Sonsalla P. K., Heikkila R. E. Evaluation of the biological activity of several analogs of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J. Neurochem. 1987; 48: 929–934
  • Nicklas W. J., Youngster S. K., Kindt M. V., Heikkila R. E. MPTP, MPP+, and mitochondrial function. Life Sci. 1987; 40: 721–729
  • Brossi A. “Further explorations of unnatural alkaloids”. J. Natural Products 1985; 48: 878–893
  • Gibb C., Willoughby J., Glover V., Sandler M., Testa B., Jenner P., Marsden C. D. Analogues of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as monoamine oxidase substrates: a second ring is not necessary. Neurosci. Lett 1987; 76: 316–322
  • Sandler M., personal communication
  • Naoi M., Matsuura S., Parvez H., Takahashi T., Hirata Y., Minami M., Nagatsu T. Oxidation of N-methyl-1,2,3,4-tetrahydroisoquinoline into the N-methylisoquinolinium ion by monoamine oxidase. J. Neurochem. 1989; 52: 653–655
  • Langston J. W., Irwin I., Langston E. B., Forno L. S. “The importance of the 4′-5′ double bond for neurotoxicity in primates of the pyridine derivative MPTP”. Neurosci. Lett. 1984; 50: 289–294
  • Bradbury A. J., Costall B., Domeney A. M., Testa B., Jenner P. G., Marsden C. D., Naylor R. J. The toxic actions of MPTP and its metabolite MPP+ are not mimicked by analogues of MPTP lacking an M-methyl moiety. Neurosci. Lett. 1985; 61: 121–126
  • Riachi N. J., Harik S. I., Kalaria R. N., Sayre L. M. On the mechanisms underlying 1 -methyl-4-pheny 1–1,2,3,6-tetrahydropyridine neurotoxicity. II. Susceptibity among mammalian species correlates with the toxin's metabolic patterns in brain microvessels and liver. J. Pharmacol. Exp. Ther. 1988; 244: 443–448
  • Arora P. K., Riachi N. J., Harik S. I., Sayre L. M. Chemical oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its in vivo metabolism in rat brain and liver. Biochem. Biophys. Res. Commun. 1988; 152: 1339–1347
  • Chiba K., Kubota E., Miyakawa T., Kato Y., Ishizaki T. Characterization of hepatic microsomal metabolism as in vivo detoxication pathway of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. J. Pharmacol. Exp. Ther. 1988; 246: 1108–1115
  • Di Monte D., Shinka T., Sandy M. S., Castagnoli N., Jr., Smith M. T. Quantitative analysis of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolism in isolated rat hepatocytes. Drug Metab. Dispos. 1988; 16: 250–255
  • Wu E., Shinka T., Caldera-Munoz P., Yoshizumi H., Trevor A., Castagnoli N., Jr. Metabolic studies on the nigrostriatal toxin MPTP and its MAO-B generated dihydropyridinium metabolite MPDP+. Chem. Res. Toxicol. 1988; 1: 186–194
  • Fonne-Pfister R., Bargetzi M. J., Meyer U. A. MPTP, the neurotoxin inducing Parkinson's disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufl, P450dbl) catalyzing debrisoquine 4-hydroxylation. Biochem. Biophys. Res. Commun. 1987; 148: 1144–1150
  • Shahi G. S., Moochlala S. M., Das N. P. Depression of the hepatic cytochrome P-450 monooxygenase system by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Pharmacol. Toxicol. 1989; 64: 107–110
  • Sahgal A., Andrews J. S., Biggins J. A., Candy J. M., Edwardson J. A., Keith A. B., Turner J. D., Wright C. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) affects locomotor activity without producing a nigrostriatal lesion in the rat. Neurosci. Lett. 1984; 48: 179–184
  • Boyce S., Kelly E., Reavill C., Jenner P., Marsden C. D. Repeated administration of N-methyM-phenyl-1,2,3,6-tetrahydropyridine to rats is not toxic to striatal dopamine neurons. Biochem. Pharmacol. 1984; 33: 1747–1752
  • Heikkila R. E., Hess A., Duvoisin R. C. Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 1984; 224: 1451–1453
  • Wallace R. A., Boldry R., Schmittgen T., Miller D., Uretski N. Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on monoamine neurotransmitters in mouse brain and heart. Life Sci. 1984; 35: 285–291
  • Schneider J. S., Yuwiler A., Markham C. H. Production of a parkinson-like syndrome in the cat with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Behavior, histology, and biochemistry. Exp. Neurol 1986; 91: 293–307
  • Johannessen J. N., Chiueh C. C., Bacon J. P., Garrick N. A., Burns R. S., Weise V. K., Kopin I. J., Parisi J. E., Markey S. P. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the dog: Effect of pargyline pretreatment. J. Neurochem. 1989; 53: 582–589
  • Johannessen J. N., Chiueh C. C., Burns R. S., Markey S. P. “Differences in the metabolism of MPTP in the rodent and primate parallel differences in sensitivity to its neurotoxic effects”. Life ScL 1985; 36: 219–224
  • Kalaria R. N., Mitchell M. J., Harik S. I. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc. Natl. Acad. Sci. USA 1987; 84: 3521–3525
  • Irwin I., DeLanney L. E., Di Monte D., Langston J. W. The biodisposition of MPP+ in mouse brain. Neurosci. Lett. 1989; 101: 83–88
  • Sershen H., Mason M. F., Hashim A., Lajtha A. Effect of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on age-related changes in dopamine turnover and transporter function in the mouse striatum. Eur. J. Pharmacol. 1985; 113: 135–136
  • Gupta M., Gupta B. K., Thomas R., Bruemmer V., Sladek J. R., Jr., Felten D. L. Aged mice are more sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment than young adults. Neurosci. Lett. 1986; 70: 326–331
  • Ricaurte G. A., DeLanney L. E., Irwin I., Langston J. W. “Older dopaminergic neurons do not recover from the effects of MPTP”. Neuropharmacology 1987; 26: 97–99
  • Saitoh T., Nijima K., Mizuno Y. Long term effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal dopamine content in young and mature mice. J. Neurol. Sci. 1987; 77: 229–235
  • Jossan S. S., Sakurai E., Oreland L. MPTP toxicity in relation to age, dopamine uptake and MAO-B activity in two rodent species. Pharmacol. Toxicol. 1989; 64: 314–318
  • Ricaurte G. A., Irwin I., Forno L. S., DeLanney L. E., Langston E., Langston J. W. Aging and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-dine-induced degeneration of dopaminergic neurons in the substantia nigra. Brain Res. 1987; 403: 43–51
  • Mitchell I. J., Cross A. J., Sambrook M. A., Crossman A. R. Sites of the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus coeruleus. Neurosci. Lett. 1985; 61: 195–200
  • Reinhard J. F., Jr., Diliberto E. J., Jr., Viveros O. H., Daniels A. J. “Subcellular compartmentalization of 1-methyl-4-phenylpyridinium with catecholamines in adrenal medullary chromaffin vesicules may explain the lack of toxicity to adrenal chromaffin cells”. Proc. Natl. Acad. Sci. USA 1987; 84: 8160–8164
  • Reinhard J. F., Jr., Diliberto E. J., Jr., Daniels A. J. Characterization of cellular transport, subcellular distribution, and secretion of the neurotoxicant 1-methyl-4-phenyIpyridinium in bovine adrenomedullary cell cultures. J. Neurochem. 1989; 52: 1253–1259
  • Cramer R. D., III, Patterson D. E., Bunce J. D. “Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins”. J. Am. Chem. Soc 1988; 110: 5959–5967
  • Maret G., El N., Tayar P., Carrupt A., Testa B., Jenner P., Baird M. Toxication of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and analogs by monoamine oxidase: A structure-reactivity relationship study. Biochem. Pharmacol, in press
  • Dostert P. L., Strolin Benedetti M., Tipton K. F. “Interactions of monoamine oxidase with substrates and inhibitors”. Med. Res. Rev. 1989; 9: 45–89
  • Smith T. E., Weissbach H., Udenfriend S. Studies on the mechanism of action of monoamine oxidase: metabolism of N,N-dimethyitryptamine and N1N-dimethyltryptamine-N-oxide. Biochemistry 1962; 1: 137–143
  • Silverman R. B., Hoffman S. J., Catus W. B., III. “A mechanism for mitochondrial monoamine oxidase catalyzed amine oxidation”. J. Am. Chem. Soc 1980; 102: 7126–7128
  • Simpson J. T., Krantz A., Lewis F. D., Kokel B. “Photochemical and photophysical studies of amines with excited flavins. Relevance to the mechanism of action of the flavin-dependent monoamine oxidase”. J. Am. Chem. Soc 1982; 104: 7155–7161
  • Yelekci K., Lu X., Silverman R. B. “Electron spin resonance studies of monoamine oxidase B. First direct evidence for a substrate radical intermediate”. J. Am. Chem. Soc 1989; 111: 1138–1140
  • Barker S. A., Harrison R. E. W., Monti J. A., Brown G. B., Christian S. T. Identification and quantification of 1,2,3,4-tetrahydro-β-carboline, 2-methyl-1,2,3,4-tetrahydro-β-carboline and 6-methoxy-1,2,3,4-tetrahydro-β-carboline as in vivo constituents of rat brain and adrenal gland. Biochem. Pharmacol 1981; 30: 9–17
  • Honecker H., Rommelspacher H. Tetrahydronorharmane (tetra-hydro-β-carboline), a physiologically occurring compound of indole metabolism. Naunyn-Schmiedeberg'sArch. Pharmacol 1978; 305: 135–141
  • Honecker H., Coper H., Fähndrich C., Rommelspacher H. “Identification of tetrahydronorharmane (tetrahydro-β-carboline) in human blood platelets”. J. Clin. Chem. Clin. Biochem. 1980; 18: 133–135
  • Bidder T. G., Schoemaker D. W., Boettger H. G., Evans M., Cummins J. T. “Harman in human platelets”. Life ScL 1979; 25: 157–164
  • Schoemaker D. W., Cummins J. T., Bidder T. G., Boettger H. G., Evans M. “Identification of harman in the rat arcuate nucleus”. Naunyn-Schmiedeberg's Arch. Pharmacol 1980; 310: 227–230
  • Kari I., Peura P., Airaksinen M. M. Quantitative gas chromatographic mass spectrometric determination of 1,2,3,4-tetrahydro-β-carboline in human plasma and platelets. Biomed. Mass Spectrom. 1980; 7: 549–552
  • Allen J. R. F., Beck O., Borg S., Skröder R. Analysis of 1-methyl-1,2,3,4-tetrahydro-β-carboline in human urine and cerebrospinal fluid by gas chromatography mass spectrometry. Eur. J. Mass. Spectrom. Biochem. Med. Environ. Res. 1980; 1: 171–177
  • Mesnil M., Testa B., Jenner P. “Xenobiotic metabolism by brain monooxygenases and other cerebral enzymes”. Adv. Drug Res. 1984; 13: 95–207
  • Rommelspacher H., Damm H., Strauss S., Schmidt G. “Ethanol induces an increase of harman in the brain and urine of rats”. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984; 327: 107–113
  • Susilo R., Rommelspacher H. Formation of a β-carboline (1,2,3,4-tetrahydro-1-methyl-β-carboline-1-carboxylic acid) following intracerebroventricular injection of tryptamine and pyruvic acid. Naunyn-Schmiedeberg's Arch. Pharmacol 1987; 335: 70–76
  • Susilo R., Rommelspacher H. “Formation of 1-methyl-β-carbolines in rats from their possible carboxylic acid precursor”. Naunyn-Schmiedeberg's Arch. Pharmacol 1988; 337: 566–571
  • Collins M. A., Neafsey E. J., Cheng B. Y., Hurley-Gius K., Ung-Chhun N. A., Pronger D. A., Christensen M. A., Hurley-Gius D. Endogenous analogs of N-methyl-4-pheny 1–1,2,3,6-tetrahydropyridine: Indoleamine derived tetrahydro-β-carbolines as potential causative factors in Parkinson's disease. Adv. Neurol 1986; 45: 179–182
  • Perry T. L., Yong V. W., Wall R. A., Jones K. Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse. Neurosci. Lett. 1986; 69: 285–289
  • Rollema H., Booth R. G., Castagnoli N., Jr. In vivo dopaminergic neurotoxicity of the 2-β-methylcarbolinium ion, a potential endogenous MPP+ analog. Eur. J. Pharmacol 1988; 153: 131–134
  • Schouten M. J., Bruinvels J. “Endogenously formed norharman (β-carboline) in platelet rich plasma obtained from porphyric rats”. Pharmacol. Biochem. Behav. 1986; 24: 1219–1223
  • Booth R. G., Trevor A., Singer T. P., Castagnoli N., Jr. Studies on semirigid tricyclic analogues of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,7. Med. Chem. 1989; 32: 473–477
  • Greiner B., Rommelspacher H. “Two metabolic pathways of tetrahydronorharmane (tetrahydro-β-carboline) in rats”. Naunyn-Schmiedeberg's Arch. Pharmacol. 1984; 325: 349–355
  • Kohno M., Ohta S., Hirobe M. “Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline as novel endogenous amines in rat brain”. Biochem. Biophys. Res. Commun. 1986; 140: 448–454
  • Niwa T., Takeda N., Kaneda N., Hashizume Y., Nagatsu T. “Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroisoquinoline in parkinsonian and normal human brains”. Biochem. Biophys. Res. Commun. 1987; 144: 1084–1089
  • Ohta S., Kohno M., Makino Y., Tachikawa O., Hirobe M. “Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline are present in the human brain: Relation to Parkinson's disease”. Biomed. Res. 1987; 8: 453–456
  • Weiner H. A model to estimate the in vivo level of tetrahydroisoquinoline in brain during the consumption of ethanol. Beta-carbolines and Tetrahydroisoquinolines, F. Bloom, et al. Alan R. Liss, New York 1982; 69–79
  • Melchior C., Collins M. A. “The route and significance of endogenous synthesis of alkaloids in animals”. CRC Crit. Rev. Toxicol. 1982; 9: 313–356
  • Perry T. L., Jones K., Hansen S. “Tetrahydroisoquinoline lacks dopaminergic nigrostriatal neurotoxicity in mice”. Neurosci. Lett. 1988; 85: 101–104
  • Suzuki K., Mizuno Y., Yoshida M. “Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity and ATP synthesis by tetrahydroisoquinoline”. Neurosci. Lett. 1988; 86: 105–108
  • Oreland L., Arai Y., Stenström A. Age, neuropsychiatric diseases and brain monoamine oxidase. Monoamine Oxidase and Disease, T. Tipton, P. Dostert, M. Strolin-, Benedetti. Academic Press, London 1984; 291–300
  • Irwin I., Ricaurte G. A., DeLanney L. E., Langston J. W. The sensitivity of nigrostriatal dopamine neurons to MPP+ does not increase with age. Neurosci. Lett. 1988; 87: 51–56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.