429
Views
187
CrossRef citations to date
0
Altmetric
Research Article

Metabolism of AZO Dyes: Implication for Detoxication and Activation

Pages 253-309 | Published online: 22 Sep 2008

References

  • Combes R. D., Haveland-Smith R. B. A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutat. Res. 1982; 98: 101–248
  • Corke C. T., Bunce N. J., Beaumont A., Merrick R. L. Diazo-nium cations as intermediates in the microbial transformation of chloroanilines to chlorinated biphenyls, azo compounds, and triazenes. J. Agric. Food Chem. 1979; 27: 644–646
  • Clarke E. A. Evaluation of the molecular design approach to the development of new dyes. Drug Metab. Rev. 1984; 15: 997–1009
  • Garner R. C., Martin C. N., Clayson D. B. Carcinogenic aromatic amines and related compounds. Chemical Carcinogens, C. E. Searle. American Chemical Society, Washington, DC 1984; vol. 1: 175
  • IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Aromatic Azo Compounds. 1975; vol. 8
  • Martin C. N., Kennelly J. C. Metabolism, mutagenicity, and DNA binding of biphenyl-based azodyes. Drug Metab. Rev. 1985; 16: 89–117
  • Venkataraman K. The Chemistry of Synthetic Dyes. Academic Press, New York 1952; vol. 1, chap. 11
  • Stead C. V. Azo dyes. The Chemistry of Synthetic Dyes, K. Venkataraman. Academic Press, New York 1970; vol. 3, chap. 6
  • Pentimalli L. Researches on the aromatic azocompounds. The oxidation of the 4-dimethylamino-azobenzene. Tetrahedron 1959; 5: 27–37
  • Daniel J. W. The excretion and metabolism of edible food colors. Toxicol. Appl. Pharmacol. 1962; 4: 572–594
  • Scheline R. R., Longberg B. The absorption, metabolism and excretion of the sulphonated azo dye, acid yellow, by rats. Acta Pharmacol. Toxicol. 1965; 23: 1–14
  • Ryan A. J., Wright S. E. The excretion of some azo dyes in rat bile. J. Pharm. Pharmacol. 1961; 13: 492–495
  • Radomski J. L., Mellinger T. J. The absorption, fate and excretion in rats of the water soluble azo dyes, FD & C yellow no. 6. J. Pharmacol. Exp. Ther. 1962; 136: 259–266
  • Priestly B. G., O'Reilly W. J. Protein binding and the excretion of some azo dyes in rat bile. J. Pharm. Pharmacol. 1966; 18: 41–45
  • Iga T., Awazu S., Hanano M., Nogami H. Pharmacokinetic studies in biliary excretion. I. Comparison of the excretion behavior of azo dyes and indigo carmine. Chem. Pharm. Bull. 1970; 18: 2431–2440
  • Bertagni P., Hirom P. C., Millburn P., Osiyemi F. O., Smith R. L., Turbert H. B., Williams R. T. Sex and species differences in the biliary excretion of tartrazine and lissamine fast yellow in the rat, guinea pig, and rabbit. The influence of sex hormones on tartrazine excretion in the rat. J. Pharm. Pharmacol. 1972; 24: 620–664
  • Ikeda M., Uesugi T. Studies on the biliary excretion mechanism of drugs. I. Biochem. Pharmacol. 1973; 22: 2743–2751
  • Miller J. A., Bauman C. A. The carcinogenicity of certain azo dyes related to p-dimethylaminoazobenzene. Cancer Res. 1945; 5: 227–234
  • Mueller G. C., Miller J. A. The reductive cleavage of 4-dimethylamino azobenzene by rat liver: Reactivation of carbon dioxide-treated homogenates by riboflavin-adenine dinucleotide. J. Biol. Chem. 1950; 185: 145–154
  • Miller J. A., Miller E. C. The carcinogenicity of certain derivatives of p-dimethylaminoazobenzene in the rat. J. Exp. Med. 1948; 87: 139–156
  • Miller J. A., Miller E. C., Finger G. C. Further studies on the carcinogenicity of dyes related to 4-dimethylaminoazobenzine. The requirement for an unsubstituted 2-position. Cancer Res. 1957; 17: 387–398
  • Miller J. A., Miller E. C. The metabolic activation of carcinogenic aromatic amines and amides. Progr. Exp. Tumor Res. 1969; 11: 273–301
  • Terayama H. Aminoazocarcinogenesis–methods and biochemical problems. Methods Biochem. Res. 1967; 1: 399
  • Ishidate M., Hashimoto Y. Metabolism of 4-dimethylamino-azobenzene and related compounds. II. Metabolites of 4-dimethyl-aminoazobenzene and 4-aminoazobenzene in rat urine. Chem. Pharm. Bull. 1962; 10: 125–133
  • Ishidate M., Tamura Z., Samejima K. Metabolism of 4-dimethyl-aminoazobenzene and related compounds. III. Metabolites of 4′-dimethylaminoazobenzene in the rat bile and influence of DAB feeding on their amounts. Chem. Pharm. Bull. 1963; 11: 1014–1021
  • Watanabe W., Ishidate M. Metabolism of 4-dimethylamino-azobenzene and related compounds. V. Quantitative analysis of biliary and urinary metabolites of 4-dimethylaminoazobenzene in rats. Chem. Pharm. Bull. 1976; 15: 1461–1469
  • Marhold J., Rambousek V., Pipalova J., Matrka M. Oxidation of carcinogenic azo-dyes. VII. Metabolites of some 4′-substituted derivatives of dimethylaminoazobenzene in the bile of rats. Neoplasma 1969; 16: 191–194
  • Levine W. G., Finkelstein T. T. Bilary excretion of W.JV-dimethyl-4-aminoazobenzene (DAB) in the rat. Drug Metab. Dispos. 1978; 6: 265–272
  • Levine W. G. Excretion mechanisms. Biological Basis of Detoxication, J. Caldwell, W. B. Jakoby. Academic Press, New York 1983; 251–285
  • Mori Y., Yamamoto T., Toyoshi K. Carcinogenic azo dyes. XI. Analysis of biliary and urinary metabolites of 3-methyl-4-(methylamino) azobenzene in rat. Chem. Pharm. Bull. 1979; 27: 379–385
  • Levine W. G. Induction and inhibition of the metabolism and biliary excretion of the azo dye carcinogen, N,N-dimethyl-4-aminoazobenzene in the rat. Drug Metab. Dispos. 1980; 8: 212–217
  • Levine W. G., Lu A. Y. H. Role of isozymes of cytochrome P-450 in the metabolism of N,N-dimethyl-4-aminoazobenzene in the rat. Drug Metab. Dispos. 1982; 10: 102–109
  • Levine W. G., Finkelstein T. T. A role for liver glutathione in the hepatobiliary fate of N,N-dimethyl-4-aminoazobenzene. J. Pharmacol. Exp. Then 1979; 203: 399–405
  • Levine W. G. Glutathione and hepatic mixed-function oxidase activity. Drug Metab. Rev. 1983; 14: 909–930
  • Levine W. G., Lee S. B. Effect of glutathione on the metabolism of N,N-dimethyl-4-aminoazobenzene by rat liver microsomes. Drug Metab. Dispos. 1983; 11: 239–242
  • Levine W. G. Glutathione, lipid peroxidation and regulation of cytochrome P-450 activity. Life Sci 1982; 31: 779–784
  • Kamataki T, Kitagawa H. Effects of lipid peroxidation on activities of drug-metabolizing enzymes in liver microsomes of rats. Biochem. Pharmacol. 1973; 22: 3199–3207
  • Miles R. R., Wright J. R., Bowman L., Colby H. D. Inhibition of hepatic microsomal lipid peroxidation by drug substrate without drug metabolism. Biochem. Pharmacol. 1980; 29: 565–570
  • Lindstrom T D., Aust S. D. Studies on cytochrome P-450-dependent lipid hydroperoxide reduction. Arch. Biochem. Biophys. 1984; 233: 80–87
  • Coles B., Srai S. K. S., Ketterer B., Waynforth B., Kadlubar F. F. Identification of 4′-sulfonyloxy-N-glutathion-S-methylene)-4-aminoazobenzene, a compound conjugated with both sulphate and glutathione, which is a major biliary metabolite of N,N-dimethyl-4-aminoazobenzene. Chem.-Biol. Interact. 1983; 43: 123–129
  • Coles B., Srai S. K. S., Waynforth H. B., Ketterer B. The major role of glutathione in the metabolism and excretion of N,N-dimethyl-4-aminoazobenzene in the rat. Chem.-Biol. Interact. 1983; 47: 307–323
  • Neish W. J. P., Rylett A. Azo dyes and rat liver glutathione. Biochem. Pharmacol. 1963; 12: 893–903
  • Neish W. J. P. Significance of bound dye and glutathione for amino-azo dye hepatocarcinogenesis. Chem.-Biol. Interact. 1971; 3: 109–116
  • Kosower N. S., Kosower E. M. The glutathione status of cells. Int. Rev. Cytol. 1978; 54: 109–160
  • Sasame H. A., Boyd M. R. Paradoxical effects of cobaltous chloride and salts of other divalent metals on tissue levels of reduced glutathione and microsomal mixed-function oxidase components. J. Pharmacol. Exp. Ther. 1978; 205: 718–724
  • Terayama H. Aminoazo dye amine-N-oxide as a possible intermediate metabolite preceding N-demethylation and ortho-hydroxylation, as well as azo dye-protein binding. Gann 1963; 54: 195–204
  • Terayama H., Orii H. Dye-protein binding in the animals administered with 4-dimethylaminoazobenzene amine-N-oxide and the toxicology of 4-dimethylaminoazobenzene-N-oxide. Gann 1963; 54: 455–464
  • Cramer J. W., Miller J. A., Miller E. C. N-hydroxylation: A new metabolic reaction observed in rats with the carcinogen 2-acetyl-aminofluorene. J. Biol. Chem. 1960; 235: 885–888
  • Kadlubar F. F., Miller J. A., Miller E. C. Microsomal N-oxidation of the hepatocarcinogen N-methyl-4-aminoazobenzene and the reactivity of N-hydroxy-N-methyl-4-aminoazobenzene. Cancer Res. 1976; 36: 1196–1206
  • Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals. Cancer Res. 1978; 38: 1479–1496
  • Kimura T., Kodama M., Nagata C. A correlation of the rate of N-hydroxylation of aminoazo dyes with their carcinogenic activity in the rat. Carcinogenesis 1982; 3: 1393–1396
  • Kimura T., Kodama M., Nagata C. N-hydroxylation enzymes of carcinogenic aminoazo dyes: Possible involvement of cytochrome P-448. Gann 1982; 73: 55–62
  • Kimura T., Kodama M., Nagata C. The role of cytochrome P-450 and flavin-containing monooxygenase in the N-hydroxylation of N-methyl-4-aminoazobenzene in rat liver: Analysis with purified enzymes and antibodies. Gann 1984; 75: 895–904
  • Kimura T., Kodama M., Nagata C. Nitroxide radicals generated from carcinogenic aminoazodyes during their metabolism in vivo and in enzymatic syste, in vitro. Biochem. Pharmacol. 1979; 28: 557–560
  • Nagata C., Kodama M., Kumura T., Nakayama T. Mechanism of metabolic activation of carcinogenic aromatic amines. Gann Monograph on Cancer Research 1985; 30: 93–110
  • Sisley P., Porcher C. Du sort des matieres colorantes dans Forganisme animal. Comptes. Rend. Acad. Sci. 1911; 152: 1062–1065
  • Fuller A. T. Is p-aminoazobenzenesulfonamide the active agent in prontosil therapy?. Lancet 1937; i: 194–198
  • Elson L. A., Warren F. L. The metabolism of azo compounds. I. Azobenzene. Biochem. J. 1944; 38: 217–220
  • Stevenson E. S., Dobriner K., Rhoads C. P. The metabolism of 4-dimethylaminoazobenzene in rats. Cancer Res. 1942; 2: 160–167
  • Trefouel J., Trefouel J., Nitti F., Bovet D. Activite du p-aminophenylsulfamide sur les infections streptococciques. Experi-mentales de la souris et due lapin. Comptes. Rend. Seanc. Soc. Biol. 1935; 120: 756–762
  • Salant W., Bengis R. Physiological and pharmacological studies on coal tar colors. I. Experiments with fat-soluble dyes. J. Biol. Chem. 1916; 27: 403–427
  • Smith J. N., Williams R. T. Studies on detoxication. 36. A note on the glucuronides of benzeneazophenol and benzenazoresorcinol. Biochem. J. 1951; 48: 546–551
  • Mueller G. C., Miller J. A. The reductive cleavage of 4-dimethylaminoazobenzene by rat liver: The intracellular distribution of the enzyme system and its requirement for triphosphopyridine nucleotides. J Biol. Chem. 1949; 180: 1125–1136
  • Fouts J. R., Kamm J. J., Brodie B. B. Enzymatic reduction of prontosil and other azo dyes. J. Pharmacol. Exp. Ther. 1957; 120: 291–300
  • Hernandez P. H., Gillette J. R., Mazel P. Studies on the mechanism of mammalian hepatic azoreductase. I. Azoreductase activity of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase. Biochem. Pharmacol. 1967; 16: 1859–1875
  • Hernandez P. H., Mazel P., Gillette J. R. Studies on the mechanism of action of mammalian hepatic azoreductase. II. The effect of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azoreductase activities. Biochem. Pharmacol. 1967; 16: 1877–1888
  • Juchau M. R., Krasner J., Yaffe S. J. Studies on reduction of azolinkages in human placental homogenates. Biochem. Pharmacol. 1968; 17: 1969–1979
  • Bray H. G., Clowes R. C., Thorpe W. V. The metabolism of azobenzene and p-hydroxyazobenzene in the rabbit. Biochem. J. 1951; 49, lxv
  • Fujita S., Peisach J. Liver microsomal cytochromes P-450 and azoreductase activity. J. Biol. Chem. 1978; 253: 4512–4513
  • Fujita S., Okada Y., Peisach J. Inhibition of azoreductase activity by antibodies against cytochromes P-450 and P-448. Biochem. Bio-phys. Res. Commun. 1981; 102: 492–498
  • Fujita S., Peisach J. The stimulation of microsomal azoreduction by flavins. Biochim. Biophys. Acta 1982; 719: 178–189
  • Mallett A. K., King L. J., Walker R. Solubilization, purification and reconstitution of hepatic microsomal azoreductase activity. Biochem. Pharmacol. 1985; 34: 337–342
  • Peterson F. J., Holtzman J. L., Crankshaw D., Mason R. P. Two sites of azoreduction in the monooxygenase system. Mol. Pharmacol. 1988; 34: 597–603
  • Elliott B. M. Azoreductase activity of Sprague Dawley and Wistar-derived rats towards both carcinogenic and noncarcinogenic analogues of 4-dimethylaminophenylazobenzene (DAB). Carcinogenesis 1984; 5: 1051–1055
  • Levine W. G. Studies on microsomal azoreduction. N,N-dimethyl-4-aminoazobenzene (DAB) and its derivatives. Biochem. Pharmacol. 1985; 34: 3259–3264
  • Raza H., Levine W. G. Azo reduction of N, N-dimethyl-4-aminoazobenzene (DAB) by rat liver microsomes. Selective induction by clofibrate. Drug Me tab. Dispos. 1986; 14: 19–24
  • De-Araujo P. S., De-Andrade-Silva E., Raw I. Effect of drugs and hormones on rat liver dimethylaminoazobenzene reductase activity. Braz. J. Med. Biol. Res 1982; 15: 17–28
  • Autrop H., Warwick G. P. Some characteristics of two azoreductase systems in rat liver. Relevance to the activity of 2-[4′-di(2″-bromopropyl)-aminophenylazo] benzoic acid (CB10–252.), a compound possessing cytotoxic activity. Chem.-Biol. Interact. 1975; 11: 329–342
  • Raza H., Levine W. G. Effect of hypolipidemic drugs on the metabolism of lauric acid and dimethylaminoazobenzene by rat liver microsomes. Biochem. Pharmacol. 1987; 36: 774
  • Gibson G. G., Orton T. C., Tamburini P. P. Cytochrome P-450 induction by clofibrate. Purification and properties of a hepatic cytochrome P-450 relatively specific for the 12- and 11-hydroxylation of dodecanoic acid (lauric acid). Biochem. J. 1982; 203: 161–168
  • Tamburini P. P., Masson H. A., Bains S. K., Makowski R. J., Morris B., Gibson G. G. Multiple forms of hepatic cytochrome P-450. Purification, characterization and comparison of a novel clofibrate-induced isozyme with other major forms of a cytochrome P-450. Eur. J. Biochem. 1984; 139: 235–246
  • Orton T. C., Parker G. L. The effect of hypolipidemic agents on the hepatic microsomal drug metabolizing enzyme system of the rat. Induction of cytochrome(s) P-450 with specificity toward terminal hydroxylation of lauric acid. Drug Metab. Dispos. 1982; 10: 110–115
  • Levine W. G., Raza H. Mechanism of azoreduction of dimethylaminoazobenzene by rat liver NADPH-cytochrome P-450 reductase and partially purified cytochrome P-450. Oxygen and carbon monoxide sensitivity and simulation by FAD and FMN. Drug Metab. Dispos. 1988; 16: 441–448
  • Reich N. O., Ortiz P., Montellano de. Dissociation of increased lauric acid ω-hydroxylase activity from the antihypolipidemic action of clofibrate. Biochem. Pharmacol. 1986; 35: 1227–1233
  • Zbaida S., Stoddart A. M., Levine W. G. Studies on the mechanism of reduction of azo dye carcinogens by rat liver microsomal cytochrome P-450. Chem.-Biol. Interact. 1989; 69: 61–71
  • Zbaida S., Levine W. G. Characteristics of two classes of azo dye reductase activity associated with rat liver microsomal cytochrome P-450. Biochem. Pharmacol. 1990; 40: 2415–2423
  • Zbaida S., Levine W. G. Sensitivity of azo dye reduction to carbon monoxide and oxygen. A probe for two different microsomal reduction pathways. FASEB J. 1990; 4: A739
  • Mason R. P., Peterson F. J., Holtzman J. L. Inhibition of azore-ductase by oxygen. The role of the azo anion free radical metabolite in the reduction of oxygen to superoxide. Mol. Pharmacol. 1978; 4: 665–671
  • Zbaida S., Levine W. G. A novel application of cyclic voltame-try for direct investigation of metabolic intermediates in microsomal azoreduction. Chem. Res. Toxicol. 1991; 4: 82–88
  • Aylward G. H., Garnett J. L., Sharp J. H. Alternating and direct current polarography of azobenzene in indifferent electrolyte in dim-ethylformamide. Anal. Chem. 1967; 39: 457–460
  • Jannakoudakis D., Kokkinidis G., Mavridis P. G. A contribution of the polarographic reduction study of azobenzene compounds in methanol in the presence of hydrogen chloride. J. Chim. Phys. Phys.-Chim. Biol 1976; 73: 872–877
  • Boto K. G., Thomas F. G. The polarography of some substituted azobenzenes in acetonitrile. V. The effects of weak proton donors. Aust. J. Chem. 1973; 26: 2417–2423
  • Iyanagi T., Makino N., Mason H. S. Redox properties of the reduced nicotinamide adenine dinucleotide phosphate–cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome bs reductase. Biochemistry 1974; 13: 1701–1710
  • Guengerich F. P. Oxidation-reduction properties of rat liver cytochrome P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry 1983; 22: 2811–2820
  • Gunegerich F. P., Ballou D. P., Coon M. J. Purified liver microsomal cytochrome P-450. Electron-accepting properties and oxidation-reduction potential. J. Biol. Chem. 1975; 250: 7405–7414
  • Sligar S. G., Cinti D. L., Schenkman J. B. Spin state control of the hepatic cytochrome P-450 redox potential. Biochem. Biophys. Res. Commun. 1979; 90: 925–932
  • Meigs R. P., Ryan K. J. Enzymic aromatization of steroids. Effects of oxygen and carbon monoxide on the intermediate steps in estrogen biosynthesis. J. Biol. Chem. 1971; 246: 83–87
  • Thompson E. A., Jr., Siiteri P. K. The involvement of human placental microsomal cytochrome P-450 in aromatization. J. Biol. Chem. 1974; 249: 5373–5378
  • Zacharia P. K., Juchau M. Interactions of steroids with human placental cytochrome P-450 in the presence of carbon monoxide. Life Sci. 1975; 16: 1689–1692
  • Juchau M., Zacharia P. K. Displacement of carbon monoxide from placental cytochrome P-450 by steroids: Antagonistic effects of androstenedione and 19-norandrostenedione. Biochem. Biophys. Res. Commun. 1975; 65: 1026–1032
  • Kellis J. T., Jr., Vickery L. E. The active site of aromatase cytochrome P-450. Differential effects of cyanide provide evidence for proximity of heme-iron and carbon-19 in the enzyme-substrate complex. J. Biol. Chem. 1987; 262: 8840–8844
  • Huang M. T., Miwa G. T., Cronheim N., Lu A. Y. H. Rat liver cytosolic azoreductase. Electron transport properties and the mechanism of dicumarol inhibition of the purified enzyme. J. Biol. Chem. 1979; 254: 11223–11227
  • DeLong M. J., Prochaska H. J., Talalay P. Induction of NAD(P)H: quinone reductase in murine hepatoma cells by phenolic antioxidants, azo dyes, and other chemoprotectors: A model system for the study of anticarcinogens. Proc. Natl. Acad. Sci. USA 1986; 83: 787–791
  • Talalay P., Benson A. M. Elevation of quinone reductase activity by anticarcinogenic antioxidants. Adv. Enzyme Reg. 1982; 20: 287–300
  • Lind C., Hochstein P., Ernster L. DT–diaphorase as a quinone reductase: A cellular device against semiquinone and superoxide radical formation. Arch. Biochem. Biophys. 1982; 216: 178–185
  • Roy D., Liehr J. G. Temporary decrease in renal quinone reductase activity induced by chronic administration of estradiol to male Syrian hamsters. J. Biol. Chem. 1988; 263: 3646–3651
  • Kitamura S., Tatsumi K. Azoreductase activity of liver aldehyde oxidase. Chem. Pharm. Bull. 1983; 31: 3334–3377
  • Stoddart A., Levine W. G. Reductive metabolism of azo dyes by rabbit liver aldehyde oxidase. FASEB J. 1991; 5: A843
  • Sugihara K., Tatsumi K. Participation of liver aldehyde oxidase in reductive metabolism of hydroxamic acids to amides. Arch. Biochem. Biophys. 1986; 247: 289–293
  • Tatsumi K., Kitamura S., Yamada H. Involvement of liver aldehyde oxidase in sulfoxide reduction. Chem. Pharm. Bull. 1982; 30: 4585–4588
  • Tatsumi K., Yamada H., Kitamura S. Reductive metabolism of JV-nitrosodiphenylamine to the corresponding hydrazine derivative. Arch. Biochem. Biophys. 1983; 226: 174–181
  • Kitamura S., Tatsumi K. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Biochem. Biophys. Res. Commun. 1984; 120: 602–606
  • Beedham C. Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab. Rev. 1985; 16: 119–156
  • Beedham C. Molybdenum hydroxylases: biological distribution and substrate-inhibitor specificity. Prog. Med. Chem. 1987; 24: 85–127
  • Kemp M. C., Kuonen D. R., Sutton A., Roberts P. J. Rat brain NADPH-dependent diaphorase. A possible relationship to cytochrome P-450 reductase. Biochem. Pharmacol. 1988; 37: 3063–3070
  • Walker R. The metabolism of azo compounds, a review of the literature. FoodCosmet. Toxicol. 1970; 8: 659–676
  • Rowland. Factors affecting metabolic activity of the intestinal microflora. Drug Metab. Rev. 1988; 19: 243–261
  • Jones R., Ryan A. J., Wright S. E. The metabolism and excretion of tartrazine in the rat, rabbit and man. Food Cosmet. Toxicol. 1964; 2: 447–452
  • Gingell R., Walker R. Mechanisms of azo reduction by Streptococcus faecalis. II. The role of soluble flavins. Xenobiotica 1971; 1: 231–239
  • Dubin P., Wright K. L. Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 1975; 5: 563–571
  • Hartman C. P., Fluk G. E., Andrews A. W. Azo reduction of trypan blue to a known carcinogen by a cell-free extract of a human intestinal anaerobe. Mutat. Res. 1978; 58: 125–132
  • Chung K.-T., Fulk G. E., Egan M. Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol. 1978; 35: 558–562
  • Zimmerman T., Kulla H. G., Leisinger T. Properties of purified Orange II azoreductase, the enzyme initiating azo dye degradation by Pseudomonas KF46. Eur. J. Biochem. 1982; 129: 197–203
  • Zimmerman T., Gasser F., Kulla H. G., Leisinger T. Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch. Microbiol. 1984; 138: 37–43
  • Kulla H. G. Aerobic bacterial degradation of azo dyes. Microbial Degradation of Xenobiotics and Recalcitrant Compounds, T. Leisinger, A. M. Cook, J. Neusch, R. Hutter. Academic Press, New York 1981; 387–399
  • Horitsu H., Takada M., Idaka E., Tomoyeda M., Ogawa T. Degradation of p-aminoazobenzene by Bacillus subtilis. Eur. J. Appl. Microbiol. 1977; 4: 217–224
  • Idaka E., Ogawa T., Horitsu H., Tomoyeda M. Degradation of azo compounds by Aeromonas hydrophilia var. 24B. J. Soc. Dyers Colourists March, 1978; 91–94
  • Wuhrmann K. K, Mechsner I., Kappeler T. L. Investigation on rate-determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol. Biotechnol. 1980; 9: 325–338
  • Nony C. R., Bowman M. C., Cairns T., Lowry L. K., Tolos L. P. Metabolism studies of an azo dye and pigment in the hamster based on analysis of the urine for potentially carcinogenic aromatic amine metabolites. J. Anal. Toxicol. 1980; 4: 132–140
  • Lynn R. K., Donielson D. W., Ilias A. M., Kennish J. M., Wong K., Matthews H. B. Metabolism of bisazophenyl dyes derived from benzidine, 3,3′-dimethylbenzidine or 3,3′dimothoxy-benzidine to carcinogenic aromatic amines in the dog and rat. J. Toxicol. Appl. Pharmacol. 1980; 56: 248–258
  • Cerniglia C. E., Freeman J. P., Franklin W., Pack L. D. Metabolism of azo dyes derived from benzidine, 3,3′-dimethylbenzidine, and 3,3′-dimethoxybenzidine to potentially carcinogenic aromatic amines by intestinal bacteria. Carcinogenesis 1982; 3: 1255–1260
  • Nony C. R., Bowman M. C. Trace analysis of potentially carcinogenic metabolites of an azo dye and pigment in hamster and human urine as determined by two chromatographic procedures. J. Chro-matogr. Sci. 1980; 18: 64–74
  • Bos R. P., Groenen M. A. M., Theuws J. L. G., Leydek-kers C. H. -M., Henderson P. Th. Metabolism of benzidine-based dyes and the appearance of mutagen metabolites in urine of rats after oral or intraperitoneal administration. Toxicology 1984; 31: 271–283
  • Bos R. P., Van Der Kruken W., Seimjsters L., Koopman J. P., deJonge H. R., Theuws J. L. G., Henderson P. Th. Internal exposure of rats to benzidine derived from orally administered benzidine-based dyes after intestinal azo reduction. Toxicology 1986; 40: 207–213
  • Manning B. W., Cerniglia C. E., Federle T. W. Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal mi-crobiota. Appl. Environ. Microbiol. 1985; 50: 10–15
  • Beland F. A., Kadlubar F. F. Formation and persistance of arylamine DNA adducts in vivo. Environ. Health Perspect. 1985; 62: 19–30
  • Kennelly J. C., Shaw A., Martin C. D. Reduction to benzidine is not necessary for the covalent binding of a benzidine azodye to rat liver DNA. Toxicology 1984; 32: 315–324
  • Urushigawa Y., Yonezawa Y. Chemico-biological interactions in biological purification systems. II. Biodegradation of azocompounds by activated sludge. Bull. Environ. Contam. Toxicol. 1977; 17: 214–218
  • Meyer U. Biodegradation of synthetic organic colorants. Microbial Degradation of Xenobiotics and Recalcitrant Compounds, T. Leisenger. Academic Press, New York 1982; 371–385
  • Miller J. A., Miller E. C. The carcinogenic aminoazo dyes. Adv. Cancer Res. 1953; 1: 339–396
  • Miller J. A., Miller E. C. Some historical aspects of N-aryl carcinogens and their metabolic activation. Environ. Health Perspect. 1983; 49: 3–12
  • Rehn L. Blasengeschwülste bei Fuchsin-Arbeitern. Arch. Klin. Chir. 1895; 50: 588–600
  • Yoshida O. A study of the aetiology of urinary bladder tumours. Jpn. J. Urol. 1973; 64: 707–712
  • Yoshita T. Über die serienweise Verfolgung der Veränderungen der Leber der experimentellen Hepatomerzeugung durch o-aminoazo-toluol. Trans. Jpn. Pathol. Soc 1933; 23: 636–638
  • Kinosita R. Researches on the carcinogenesis of various chemical substances. Gann 1936; 30: 423–426
  • Van Duuren B. L. Carcinogenicity of hair dye components. J. Environ. Pathol. Toxicol. 1980; 3: 237–251
  • Haley T. J. Benzidine revisited: A review of the literature and problems associated with the use of benzidine and its congeners. Clin. Toxicol. 1975; 1: 13–42
  • Case R. A. M., Hasker M. E., McDonald D. B., Pearson J. T. Tumours of the urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry. Part I. The role of aniline, benzidine, alpha naphthylamine and beta naphthylamine. Br. J. Ind. Med. 1954; 11: 75–96
  • Miller E. C., Miller J. A. Mechanisms of chemical carcinogenesis: nature of proximate carcinogens and interactions with macromol-ecules. Pharmacol. Rev. 1966; 18: 805–838
  • Miller J. A. Carcinogenesis by chemicals: An overview. Cancer Res. 1970; 30: 559–576
  • Miller E. C., Miller J. A. The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanisms of action in carcinogenesis, chap. 16 in. Chemical Carcinogens, C. E. Searle. ACS Monograph 173, American Chemical Society, Washington, DC 1976; 737–762
  • Wright A. S. The role of metabolism in chemical mutagenesis and chemical carcinogenesis. Mutat. Res. 1980; 75: 215–241
  • Fischer B. Die experimentelle Erzeugung atypischer Epithel-wucherungen und die Enstehung bösortiger Geshwülste. Münch. Med. Wochenschr. 1906; 53: 2041–2047
  • Scott T. S. The incidence of bladder tumours in a dyestuffs factory. Br. J. Ind. Med. 1952; 9: 127–132
  • Kansler C. J., Sugiura K., Young N. F., Halter C. R., Rhoads C. P. Partial protection of rats by riboflavin with casein against liver cancer caused by dimethylaminoazobenzene. Science 1941; 93: 308–310
  • Rivlin R. S. Riboflavin and cancer: A review. Cancer Res. 1973; 33: 1977–1986
  • Williams J. R., Grantham P. H., Yamamoto R. S., Weis-burger J. H. Effect of dietary riboflavin on azo dye reductase in liver and in bacteria of cecal contents of rats. Biochem. Pharmacol. 1970; 19: 2523–2525
  • Declos K. B., Miller E. C., Miller J. A., Liem A. Sulfuric acid esters as major ultimate electrophilic and hepatocarcinogenic metabolites of 4-aminoazobenzene and its /V-methyl derivatives in infant male C57BL/6J x C3H/HeJ F1 (B6C3F1) mice. Carcinogenesis 1986; 7: 277–287
  • Delclos K. B., Tarpley W. G., Miller E. C., Miller J. A. 4-Aminoazobenzene and N,N-dimethyl-4-aminoazobenzene as equipotent carcinogens in male C57BL/6 x C3H/He F1 mice and characterization of N-(deoxyguanosin-8-yl)-4-aminoazobenzne as the major persistent hepatic DNA-bound dye in these mice. Cancer Res. 1984; 44: 2540–2550
  • Prival M. J., Peiper M. D., Bell S. J. Evaluation of azo food dyes for mutagenicity and inhibition of mutagenicity by methods using Salmonella typhimurium. Mutat. Res. 1988; 206: 247–259
  • Reid T. M., Morton K. C., Wang C. Y., King C. M. Mutagenicity of azo dyes following metabolism by different reductive/oxida-tive systems. Environ. Mutagen. 1984; 6: 705–717
  • Miller E. C., Miller J. A. The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 1947; 7: 468–480
  • Poirier L. A., Miller J. A., Miller E. C., Sato K. W-Benzoyloxy-N-methyl-4-aminoazobenzene: Its carcinogenic activity in the rat and its reactions with proteins and nucleic acids and their constituent. in vitro. Cancer Res. 1967; 27: 1600–1613
  • Kadlubar F. F., Miller J. A., Miller E. C. Hepatic metabolism of yV-hydroxy-N-methyl-4-aminoazobenzene and other/V-hydroxyl arylamines. Cancer Res. 1976; 36: 2350–2359
  • Kadlubar F. F., Ketterer B., Flammang T. J., Christodoulides L. Formation of 3-glutathione-5-yl-N-methyl-4-aminoazobenzene and inhibition of aminoazo dye-nucleic acid binding in vitro by reaction of glutathione with metabolically-generated N-methyl-4-aminoazo-benzene-N-sulfate. Chem.-Biol. Interact. 1980; 31: 265–278
  • Meerman J. H. N., van Doom A. B. D., Mulder G. J. Inhibition of sulfate conjugation of N-hydroxy-2-acetylaminofluorene in isolated perfused rat liver and in the rat in vitro by pentachlorophenol and low sulfate. Cancer Res. 1980; 40: 3772–3779
  • Blunck J. M., Crowther C. E. Enhancement of azo dye carcinogenesis by dietary sodium sulfate. Eur. J. Cancer 1975; 11: 23–32
  • Degawa M., Miyairi S., Hashimoto Y. Electrophilic reactivity and mutagenicity of ring methyl derivatives of N-acyloxy-N-methyl-4-aminoazobenzene and related azo dyes. Gann 1978; 69: 367–374
  • King C. M., Glowinski I. B. Acetylation, deacetylation and acyl transfer. Environ. Health Persp. 1983; 49: 43–50
  • Flammang T. J., Kadlubar F. F. Acetyl coenzyme A-dependent metabolic activation of N-hydroxy-3,2′-dimethyl-4-aminobiphenyl and several N-hydroxyarylamines in relation to tissue and species differences, other acyl donors, and arylhydroxamic acid-dependent aceytransferases. Carcinogenesis 1986; 7: 919–926
  • Hashimoto Y., Degawa M., Watanabe A. K., Taka M. Amino acid conjugation of N-hydroxy-4-aminoazobenzene dyes: A possible activation process of carcinogenic 4-aminoazobenzene dyes to their ultimate mutagenic or carcinogenic metabolites. Gann 1981; 72: 937–943
  • Lindahl T. DNA repair enzymes. Ann. Rev. Biochem. 1982; 51: 61–87
  • Lin J. K., Miller J. A., Miller E. C. Structures of hepatic nucleic acid-bound dyes in rats given the carcinogen N-methyl-4-aminoazo-benzene. Cancer Res. 1975; 35: 844–859
  • Beland E A., Tullis D. L., Kadlubar F. F., Straub K. M., Evans F. E. Characterization of DNA adducts of the carcinogen N-methyl-4-aminoazobenzene in vitro and in vivo. Chem.-Biol. Interact. 1980; 31: 1–17
  • Tullis D. L., Straub K. M., Kadlubar F. F. A comparison of the carcinogen-DNA adducts formed in rat liver in vivo after administration of single or multiple doses of N-methyl-4-aminoazobenzene. Chem-Biol. Interact. 1981; 38: 15–27
  • Tullis D. L., Dooley K. L., Miller D. W., Baetcke K. P., Kadlubar F. F. Characterization and properties of the DNA adducts formed from N-methyl-4-aminoazobenzene in rats during a carcinogenic treatment regimen. Carcinogenesis 1987; 8: 577–583
  • Beland F. A., Beranek D. T., Dooley K. L., Heflich R. H., Kadlubar F. F. Arylamine-DNA adducts in vitro and in vivo: Their role in bacterial mutagenesis and urinary bladder carcinogenesis. Environ. Health Perspect. 1983; 49: 125–134
  • Tarpley W. G., Miller J. A., Miller E. C. Adducts from the reaction of N-benzoyloxy-N-methyl-4-aminoazobenzene with deoxygua-nosine or DNA in vitro and from hepatic DNA of mice treated with N-methyl- or N,N-dimethyl-4-aminoazobenzene. Cancer Res. 1980; 40: 2493–2499
  • Marnett L. J. Peroxyl free radicals: Potential mediators of tumor initiation and promotion. Carcinogenesis 1987; 8: 1365–1373
  • Nakayama T., Kimura T., Kodama M., Nagota C. Generation of hydrogen peroxide and superoxide anion from active metabolites of naphthylamines and aminoazo dyes: Its possible role in carcinogenesis. Carcinogenesis 1983; 4: 765–769
  • Stier A., Clauss R., Lucke A., Reitz I. Redox cycle of stable mixed nitroxides formed from carcinogenic aromatic amines. Xenobiotica 1980; 10: 661–673
  • Vasdev S., Tsuruta Y, O'Brien P. J. A free radical mechanism for arylamine induced carcinogenesis involved peroxides. Biochem. Pharmacol. 1982; 31: 607–608
  • Labuc G. E., Blunck J. M. Metabolic activation of the hepatocar-cinogen 3′-methyl-4-dimethylaminoazobenzene by a rat liver cell-free system. Biochem. Pharmacol. 1979; 28: 2367–2373
  • Mori Y, Niwa T., Toyoshi K., Nagai H., Koda A., Kawada K., Ojima A., Takahashi Y. Carcinogenicity of 3′-hydroxymethyl-N,N-dimethyl-4-aminoazobenzene in rat liver. Carcinogenesis 1980; 1: 533–535
  • Mori Y., Niwa T., Toyoshi K., Hirano K., Sigiura M. Mutagenesis in Salmonella after metabolic activation of carcinogenic azo dyes and their isomers by liver S9 from rats, mice and hamsters. Mutat. Res. 1983; 121: 95–102
  • Mori H., Tanaka T., Sugie S., Kumiyasu T., Iwata H., Ni-i H., Nishwaki A., Mori Y. Hepatocarcinogenic activities of hydroxyme-thyl derivatives of 4-(N,N-dimethylamino)azobenzene in ACI/N rats. J. Natl. Cancer Inst. 1987; 79: 1159–1161
  • Mori Y., Niwa T., Toyoshi K. Carcinogenic activities of hydroxymethyl derivatives of 4-(dimethylamino) azobenzene in the liver of rats, mice and hamsters. Exp. Pathol. 1984; 26: 15–19
  • Mori Y., Niwa T., Toyoshi K. Participation of cytochrome P-450 in mutagenic activation of the carcinogen, 3′-hydroxymethyl-N,N-dimethyl-4-aminobenzene and its N-demethylated compounds by rat liver. Mutat. Res. 1983; 122: 13–22
  • Watabe T., Hiratsuka A, Ogura K., Endoh K. A reactive hydroxymethyl sulfate ester formed regioselectively from the carcinogen, 7,12-dihydroxymethylbenz[a]anthracene, by rat liver sulfotransferase. Biochem. Biophys. Res. Commun. 1985; 131: 694–699
  • Watabe T., Ishizuba T., Fujieda T., Hiratsuka A., Ogura K. Sulfate esters of hydroxymethyl-methyl-benz[a]anthracene. Jpn. J. Cancer Res. 1985; 76: 684–698
  • Surh Y.-J., Lai C.-C., Miller J. A., Miller E. C. Hepatic DNA and RNA adduct formation from the carcinogen 7-hydroxymethyl-12-methyl-benz[a]anthracene and its electrophilic sulfuric acid ester metabolite in preweaning mice and rats. Biochem. Biophys. Res. Commun. 1987; 144: 576–582
  • Mori Y., Niwa T., Yamazaki H., Ni-i H., Toyoshi K., Hirano K., Sugiura M. Influence of microsomal and cytosolic fractions from the liver of 4 animal species and man on the mutagenicity of carcinogenic aminoazo dyes and nature of the mutagenicity-enhancing factor in the cytosol from rat liver. Chem. Pharm. Bull. 1984; 32: 3641–3650
  • Levine W. G., Lee S. B. Cytosolic factors that alter the metabolism of N,N-dimethyl-4-aminoazobenzene by rat liver microsomes. Biochem. Pharmacol. 1983; 32: 3137–3144
  • Dipple A. Model studies for azo dye carcinogens. J. Chem. Soc. Per-kin Trans. 1972; 1: 447–449
  • Stiborova M., Asfaw B., Anzenbacher P., Leseticky L., Hodek P. The first identification of the benzenediazonium ion formation from a non-aminoazo dye, l-phenylazo-2-hydroxynaphthalene (Sudan I) by microsomes of rat livers. Cancer Lett. 1988; 40: 319–326
  • Stiborova M., Asfaw B., Arzenbacher P., Hodek P. A new way to carcinogencity of azo dyes: The benzenediazonium ion formed from a non-aminoazo dye, l-phenylazo-2-hydroxy-naphthalene (Sudan I) by microsomal enzymes binds to deoxyguanosine residues of DNA. Cancer Lett. 1988; 40: 327–333
  • Buttery R. G., Guadagni D. G., Garibaldi J. A. Diazonium cations as intermediates in the microbial transformaton of chloroanilines to chlorinated biphenyls, azo compounds, and triazenes. J. Agric. Food Chem. 1979; 27: 644–646
  • Matsumoto M., Terayama H. Studies on the mechanism of liver carcinogenesis by certin amino azo dyes. VI. Reductive cleavage of various aminoazo dyes with rat liver homogenates. Gann 1965; 56: 169–185
  • Lambooy J. R, Koffman B. M. 4-Dimethylaminoazobenzenes: Carcinogenicities and reductive cleavage by microsomal azo reductase. Chem.-Biol. Interact 1985; 53: 107–120
  • Ames B. N. The detection of carcinogens as mutagens: The Salmo-nella/microsome test. In Vitro Metabolic Activation in Mutagenesis Testing, F. J. de Serre, J. R. Fouts, J. R. Bend, R. M. Philpot. Elsevier, Amsterdam 1976; 57–62
  • Williams G. M. Oetection of chemical carcinogens by unscheduled DNA synthesis in rat liver primary cell cultures. Cancer Res. 1981; 37: 45–55
  • Mori H., Mori Y., Sugie S., Yoshimi N., Takahashi M., Ni-i H., Yamazaki H., Toyoshi K., Williams G. M. Genotoxocity of a variety of azobenzene and aminoazobenzene compounds in the hepatocyte/DNA repair test and the Salmonella/mutagenicity test. Cancer Res. 1986; 46: 1654–1658
  • Kornbrust D. J., Barfknecht T. R. Comparison of 7 azo dyes and their azo reduction products in the rat and hamster hepatocyte primary culture/DNA repair assays. Mutat. Res. 1984; 136: 255–266
  • Ashby J., Lefevre P. A., Styles J., Charlesworth J., Paton D. Comparisons between carcinogenic potency and mutagenic potency to Salmonella in a series of derivatives of 4-dimethylaminoazobenzene (DAB). Mutat. Res. 1982; 93: 67–81
  • Ashby J., Lefevre P. A., Callander R. D. The possible role of azoreduction in the bacterial mutagenicity of 4-dimethylaminoazobenzene (DAB) and 2 of its analogues (6BT and 51). Mutat. Res. 1983; 116: 271–279
  • Ashby J., Lefevre P. A., Burlinson B., Penman M. G. An assessment of the in vivo rat hepatocyte DNA repair assay. Mutat. Res. 1985; 156: 1–18
  • Dashwood R. H., Combes R. D., Ashby J. The disposition and in vivo covalent binding to liver DNA of the monoazodyes 6-(p-dimethylaminophenylazo) benzothiazole (6BT) and 5-p-dimethyl-aminophenylazo)indazole (51) after administration to the rat. Carcinogenesis 1986; 7: 1029–1033
  • Dashwood R. H., Combes R. H., Paton R. D., Ashby J. Mutagenicity to Salmonella of four derivatives of the azo mutagen 51: Some implications for structure-activity databases and the evaluation of combinations of mutagens. Mutagenesis 1986; 1: 261–265
  • Prival M. J., Mitchell V. D. Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mutat. Res. 1982; 97: 103–116
  • Joachim F., Burrell A., Anderson J. Mutagenicity of azo dyes in the Salmonella/microsome assay using in vitro and in vivo activation. Mutat. Res. 1985; 156: 131–138
  • Hashimoto Y, Watanabe H. K., Degawa M. Mutagenicity of 4-aminoazobenzene, N-hydroxy-4-aminoazobenzene, 4-nitrosoazo-benzene, 4-nitroazobenzene, and their ring methoxylated derivatives in Salmonella. Gann 1981; 72: 921–929
  • Rinde E., Troll W. Metabolic reduction of benzidine azo dyes to benzidine in the rhesus monkey. J. Natl. Cancer Inst. 1975; 55: 181–182
  • Tanaka K., Mii T., Marui S., Matsubara I., Igaka H. Mutagenicity of urinary metabolites of benzidine and benzidine-based azo dyes. Int. Arch. Occup. Environ. Health 1981; 49: 177–185
  • Tanaka K., Mii T., Marui S., Matsubara I., Igaka H. Some aspects of metabolism and mutagenicity of o-tolidine and an o-tolidine-based azo dye. Indust. Health 1982; 20: 227–235
  • Bowman M. C., Nony C. R., Billideau S. M., Martin J. L., Thompson H. C., Jr., Lowry L. K. Metabolism of nine benzidine-congener-based azodyes in rats based on gas chromatographic assays of urine for potentially carcinogenic metabolites. J. Anal. Toxicol. 1983; 7: 55–60
  • Henschler D., Wild D. Mutagenic activity in rat urine after feeding with the azo dye tartrazine. Arch. Toxicol. 1985; 57: 214–215
  • Munzner R., Wever J. Mutagenic activity of the feces of rats following oral administration of tartrazine. Arch. Toxicol. 1987; 60: 328–330
  • Lazear E. J., Shaddock J. G., Barren P. R., Louie S. C. The mutagenicity of some of the proposed metabolites of direct black 38 and pigment of yellow 12 in the Salmonella typhimurium assay system. Toxicol. Lett. 1979; 4: 519–525
  • Cerniglia C. E., Zhuo Z., Manning B. W., Federle T. W., Heflich R. H. Mutagen activation of the benzidine-based dye Direct Black 38 by human intestinal microflora. Mutat. Res. 1986; 175: 11–16
  • Lin G. H. Y., Solodar W. E. Structure-activity relationship studies on the mutagenicity of some azo dyes in the Salmonella microsome assay. Mutagenesis 1988; 3: 311–315
  • Shahin M. M. Evaluation of the mutagenicity of azo dyes in Salmonella typhimurium: A study of structure-activity relationships. Mutagenesis 1989; 4: 115–125
  • Joachim F., Decad G. M. Induction of unscheduled DNA synthesis in primary rat hepatocytes by benzidine-congener-derived azo dyes in the in vitro and in vivo/in vitro assay. Mutat. Res. 1984; 136: 147–152
  • Igarashi S., Yonekawa H., Kawajiri K., Watanabe J., Kimura T., Kodama M., Nagata C., Tagashira Y. Participation of the microsomal electron transport system in mutagenic activation of 4-dimethylaminoazobenzene, 4-methylaminoazobenzene and their 3′-methyl-derivatives. Biochem. Biophys. Res. Commun. 1982; 106: 164–169
  • Soderland E. J., Dybing E., Nordenson S., Tjelta E. The role of ethyl and fluorine substitution in the 4′ position for N,N-diethyl-4-aminoazobenzene mutagenicity and azo reduction. Ada Pharmacol. Toxicol. 1980; 47: 175–182
  • Brown J. P., Roehm G. W., Brown R. J. Mutagenicity testing of certified food colors and related azo, xanthine and triphenyl-methane dyes with the Salmonella/microsome system. Mutat. Res. 1978; 56: 249–271
  • Tokiwa H., Nakagawa R., Ohnishi Y. Mutagenic assay of aromatic nitro compounds with Salmonella typhimurium. Mutat. Res. 1981; 91: 321–325
  • Moon R. C., Itri L. M. Retinoids and cancer. The Retinoids, M. B. Sporn, A. B. Roberts, D. S. Goodman. Academic Press, New York 1984; vol. 2: 327–371
  • Sporn M. B., Newton D. L. Chemoprevention of cancer with retinoids. Fed. Proc 1979; 38: 2528–2534
  • Baird M. B., Birnbaum L. S. Inhibition of 2-aminofluorene induced mutagenesis in Salmonella typhimurium by vitamin A. J. Natl. Cancer Inst. 1979; 63: 1093–1096
  • Busk L., Ahlborn U. G. Retinol (vitamin A) as a modifier of 2-aminofluorene and 2-acetylaminofluorene mutagenesis in the Salmonella/microsome assay. Arch. Toxicol. 1982; 49: 169–174
  • Busk L., Ahlborn U. G. Retinol (vitamin A) as an inhibitor of the mutagenicity of aflatoxin B1. Toxicol. Lett. 1980; 6: 243–249
  • Nomi S., Matsuura T., Ueyama H., Ueda K. Effect of vitamin A compounds on the covalent binding of benzo(a)pyrene to nuclear macromolecules. J. Nutr. Sci Vitaminol. 1981; 17: 33–41
  • Shoyab M. Inhibition of the binding of 7,12-dimethylbenzanthracene to DNA of murine epidermal cells in culture by vitamin A and vitamin C. Oncology 1981; 28: 187–192
  • Rocchi P., Arfellini G., Capucci A., Grilli M. P., Prodi G. Effect of vitamin A palmitate on mutagenesis induced by polycyclic aromatic hydrocarbons in human cells. Carcinogenesis 1983; 4: 245–247
  • Victorin K., Busk L., Ahlborn U. G. Retinol (vitamin A) inhibits the mutagenicity of o-aminoazotoluene activated by liver microsomes from several species in the Ames test. Mutat. Res. 1987; 179: 41–48
  • Balbinder E., Stich S. N., Sharma O. K. Complex effects of retinol on the metabolic activation of 2-aminofluorene. Environ. Mutagen. 1983; 5: 665–678
  • Busk L. Vitamin A (retinoids) as a modifier of chemical mutagenesis and carcinogenesis. Thesis, Acta Univ. Upsal., Uppsala, Sweden, No. 740

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.