64
Views
100
CrossRef citations to date
0
Altmetric
Research Article

Role of the Gastrointestinal Mucosa and Microflora in the Bioactivation of Dietary and Environmental Mutagens or Carcinogens

, &
Pages 425-492 | Published online: 22 Sep 2008

References

  • Metchnikoff E. Sur la flore du corps humain. Manchester Lit. Philos. Soc. 1901; 45: 1–38
  • Higginson J., Oettle A. G. Cancer incidence in the Bantu and Cape coloured race of South Africa. J. Natl. Cancer Inst. 1960; 24: 584–671
  • Greg O., Toman R., Prusova F. Gastrointestinal cancer and nutrition. Gut 1969; 10: 1031–1034
  • Aries V., Crowther J. S., Drasar B. S., Hill M. J., Williams R. E. O. Bacteria and the aetiology of cancer of the large bowel. Gut 1969; 10: 334–335
  • Howell M. A. Diet as an etiological factor in the development of cancers of the colon and rectum. J. Chronic Diseases 1975; 28: 67–80
  • Wynder E. L., Shigematsu T. Environmental factors of cancer of the colon and rectum. Cancer 1967; 20: 1520–1561
  • Burkitt D. P. Epidemiology of cancer of the colon and rectum. Cancer 1971; 28: 3–13
  • Armstrong B., Doll R. Environmental factors and cancer incidence in different countries with special reference to dietary practices. Int. J. Cancer 1975; 15: 617–631
  • Haenszel W., Correa P. Cancer of the colon and rectum and adenomatous polyps-a review of epidemiologic findings. Cancer 1971; 28: 14–24
  • Autrup H., Jeffrey A. M., Harris C. C. Metabolism of benzo[α]pyrene in cultured human colon and esophagus. Polynuclear Aromatic Hydrocarbons, A. Bjorseth, A. J. Dennis. Raven Press, New York 1980; 89–105
  • Autrup H., Schwartz R. D., Essigman J. M., Smith L., Trump B. F., Harris C. C. Metabolism of aflatoxin B1, benzo[α]pyrene, and 1,2–dimethylhydrazine by cultured rat and human colon. Teratogenesis, Carcinogenesis, Mutagenesis 1980; 1: 3–13
  • Czygan P., Greim H., Garro A. J., Hutterer F., Schaffner F., Popper H. Cytochrome P-450 content and the ability of liver microsomes from patients undergoing abdominal surgery to alter mutagenicity of a primary and secondary carcinogen. J. Natl. Cancer Inst. 1973; 51: 1761–1764
  • Czygan P., Greim H., Garro A. J., Hutterer F., Schaffner F., Popper H., Rosenthal O., Cooper D. Y. Microsomal metabolism of dimethylnitrosamine and the cytochrome P-450 dependency of its activation to a mutagen. Cancer Res. 1973; 33: 2983–2986
  • Grafstrom R. L., Harris C. C. Metabolism of N-nitrosomines and effects of formaldehyde on DNA repair in cultured human tissues and cells. Extrahepatic Drug Metabolism and Chemical Carcinogenesis, J. Rydstrom, J. Montelius, M. Bengtsson. Elsevier Science Publisher, Amsterdam, New York, Oxford 1983; 527–540
  • Guttenplan J. B., Hutterer F., Garro A. J. Effects of cytochrome P-448 and P-450 inducers on microsomal dimethylnitrosamine demethylase activity and the capacity of isolated microsomes to activate dimethylnitrosamine to a mutagen. Mutat. Res. 1976; 35: 415–422
  • Guttenplan J. B., Garro A. J. Factors affecting the induction of dimethylnitrosamine demethylase by Aroclor 1254. Cancer Res. 1977; 37: 329–330
  • Bowes S., Renwick A. G. The intestinal metabolism and DNA binding of benzo[a]pryrene in guinea pigs fed normal, high fat and high cholesterol diets. Xenobiotica 1986; 16: 543–553
  • Grantham P. H., Ba-Giao N., Mohan L. C., Benjamin T., Roller P. P., Weisburger E. K. Metabolism of 6-aminochrysene in the rat. Eur. J. Cancer 1976; 12: 227–235
  • Kato R. Metabolic activation of mutagenic heterocyclic aromatic amines from protein pyrolysates. CRC Crit. Rev. Toxicol. 1986; 16: 307–348
  • Voogd C. E. On the mutagenicity of nitroimidazoles. Mutat. Res. 1981; 86: 243–277
  • Renwick A. G., Williams R. T. The fate of cyclamate in man and other species. Biochem. J. 1972; 129: 869–879
  • Laquer G. L., McDaniel E. G., Matsumoto H. Tumor induction in germfree rats with methylazoxymethanol (MAM) and synthetic MAM acetate. J. Natl. Cancer Inst. 1967; 39: 355–371
  • Tamura L., Gold C., Ferro-Luzzi A., Ames B. N. Fecalase: A model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sri. USA 1980; 77: 4961–4965
  • Chung K. T., Fulk G. E., Andrews A. W. The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes. Mutat. Res. 1978; 58: 375–379
  • Reid T M., Morton K. C., Wang C. Y., King C. M. Conversion of Congo red and 2-azoxyfluorene to mutagens following in vitro reduction by whole-cell cecal bacteria. Mutat. Res. 1983; 117: 105–112
  • McCoy E. C., Rosenkranz H. S., Mermelstein R. Evidence for the existence of a family of m-nitroreductases capable of activating nitrated polycyclics to mutagens. Mutagenesis 1981; 3: 421–427
  • McCoy E. C., Petrillo L. A., Rosenkranz H. S. The demonstration of cooperative action of bacterial and intestinal mucosa enzymes in the activation of mutagens. Biochem. Biophys. Res. Commun. 1979; 89: 859–862
  • McCoy E. C., Speck T. S., Rosenkranz H. S. Activation of a procarcinogen to mutagen by cell-free extracts of anerobic bacteria. Mutat. Res. 1977; 46: 261–264
  • Levine W. G. Metabolism of azo dyes: Implication of detoxication and activation. Drug Metab. Rev. 1991; 23: 253–309
  • Fu P. P. Metabolism of nitro-polycyclic aromatic hydrocarbons. Drug Metab. Rev. 1990; 22: 209–268
  • King L. C., Kohan M. J., George S. E., Lewtas J., Claxton L. D. Metabolism of l-nitropyrene by human, rat and mouse intestinal flora: Mutagenicity of isolated metabolites by direct analysis of HPLC fractions with a microsuspension reverse mutation assay. J. Toxicol. Environ. Health 1990; 31: 179–192
  • Mirsalis J. C., Hamm T. E., Jr., Sherrill J. M., Butterworth B. E. Role of gut flora in the genotoxicity of dinitrotoluene. Nature 1982; 295: 322–323
  • Delclos K. B., Cerniglia C. E., Dooley K. L., Campbell W. L., Franklin W., Walker R. P. The role of intestinal microflora in the metabolic activation of 6-nitrochrysene to DNA-binding derivatives in mice. Toxicology 1990; 60: 137–150
  • Laitinen M., Watkins J. B. Mucosal biotransformations. Gastrointestinal Toxicology, K. Rozman, O. Hanninen. Elsevier Science Publisher B.V., Amsterdam, New York, Oxford 1986; 412–434
  • Hanninen O., Lindstrom-Seppa P., Pelkonen K. Role of gut in xenobiotic metabolism. Arch. Toxicol 1987; 60: 34–36
  • Ilett K. F., Tee L. B. G., Reeves P. T., Minchin R. F. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol. Ther. 1990; 46: 67–93
  • Rowland I. R. Factors affecting metabolic activity of the intestinal flora. Drug Metab. Rev. 1988; 19: 243–261
  • Combes R. D. Cytochrome P-450, mixed function oxidases and formation of genotoxic metabolites by the intestinal tract. Intestinal Metabolism of Xenobiotics, A. Sj. Koster, E. Richter, F. Lauterbach, F. Hartmann. Gustav Fisher Verlag, Stuttgart, New York 1989; 119–145
  • Thies E., Siegers C. P. Metabolic activation and tumorigenesis. Intestinal Metabolism of Xenobiotics, A. Sj. Koster, E. Richter, F. Lauterbach, F. Hartmann. Gustav Fischer Verlag, Stuttgart, New York 1989; 199–214
  • Mallett A. K., Rowland I. R. Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Dig. Dis. 1990; 8: 71–79
  • Goldin B. R. The metabolism of the intestinal microflora and its relationship to dietary fat, colon and breast cancer. Prog. Clin. Biol. Res. 1986; 222: 655–685
  • Gorbach S. L., Goldin B. R. The intestinal microflora and the colon cancer connection. Rev. Infect. Dis. 1990; 12: S252–S256
  • Hill M. The role of bacteria in human carcinogenesis. Anticancer Res. 1987; 7: 1079–1084
  • Goldin B. R. In situ bacterial metabolism and colon mutagens. Ann. Rev. Microbiol. 1986; 40: 367–393
  • Goldin B. R. Intestinal microflora: Metabolism of drugs and carcinogens. Ann. Med. 1990; 22: 43–48
  • Weisburger J. H., Weisburger E. K. Biochemical formation and pharmacological toxicological and pathological properties of hydroxylamines and hydroxamic acids. Pharmacol. Rev. 1973; 25: 1–66
  • Vernet A., Seiss M. H. Comparison of the effects of various flavonoids on ethoxycoumarin deethylase activity of rat intestinal and hepatic microsomes. Food Chem. Toxicol. 1986; 24: 857–861
  • Karpinsky G. E., McCoy E. C., Rosenkranz H. S. Conversion of human bile to mutagens by human-derived strains of. Bacteroides fragilis, Environ. Mutag. 1979; 1: 155–156
  • Rosenkranz H. S., Karpinsky G. E., McCoy E. C. Microbial assays: Evaluation and application to the illucidation of the etiology of colon cancer. Short-Term Mutagenicity Test Systems for Detecting Carcinogens, K. Norpoth, R. C. Garner. Springer Verlag, Berlin 1979; 19–57
  • Batzinger R. P., Bueding E., Crawford K., Bruce J. Prevention of the mutagenic activation of an antischistosomal isothiocyanate in primates by an antibiotic. Environ. Mutag. 1979; 1: 353–360
  • Batzinger R. P., Bueding E., Reddy B. J., Weisburger J. H. Formation of a mutagenic drug metabolite by intestinal microorganisms. Cancer Res. 1978; 38: 608–612
  • Hartman C. P., Fulk G. E., Andrews A. W. Azo reduction of trypan blue to a known carcinogen by a cell free extract of a human intestinal anaerobe. Mutat. Res. 1978; 58: 125–132
  • Rickert D. E. Metabolism of nitroaromatic compounds. Drug Metab. Rev. 1987; 18: 23–53
  • Abrams G. P., Bauer H., Sprinz H. Influence of the normal microbial flora on mucosal morphology and cellular renewal in the ileum. Lab. Invest. 1963; 12: 355–364
  • Rolls B. A., Turvey A., Coates M. E. The influence of the gut mircoflora and dietary fibre on epithelial cell migration in the chick intestine. Br. J. Nutr. 1978; 39: 91–98
  • Cole C. B., Fuller R., Mallett A. K., Rowland I. R. The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J. Appl. Bacteriol. 1985; 59: 549–553
  • Mallett A. K., Bearne C. A., Rowland I. R. Metabolic activity and enzyme induction in rat fecal microflora maintained in continuous culture. Appl. Environ. Microbiol. 1983; 467: 591–595
  • Rowland I. R., Mallett A. K., Wise A. The effect of diet on the mammalian gut flora and its metabolic activities. Crit. Rev. Toxicol. 1985; 16: 31–103
  • Gregus Z., Klaasen C. D. Enterohepatic circulation of toxicants. Gastrointestinal Toxicology, K. Rozman, O. Hanninen. Elsevier, Amsterdam 1986; 57–118
  • Drasar B. S., Barrow P. A. Intestinal Microbiology. American Society for Microbiology, Washington, DC 1985; 80
  • Caldwell J., Marsh V. M. Metabolism of drugs by the gastrointestinal tract, in Clinical Pharmacology and Therapeutics, I. Presystemic Drug Elimination, C. F. George, A. Renwick. Butterworth's International Medical Reviews, London 1982; 29–42
  • Savage D. C. Microbial ecology of the gastrointestinal tract. Ann. Rev. Microbiol. 1977; 31: 107–133
  • Moore W. E. C., Holdeman L. V. Human fecal flora: The normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 1974; 27: 961–979
  • Finegold S. M., Sutter V. L., Sugihara P T., Edler H. A., Lehmann S. M., Phillips R. L. Fecal flora of Seventh Day Adventist populations and control subjects. Amer. J. Clin. Nutri. 1977; 30: 1781–1792
  • Stephen A. M., Cummings J. H. The microbial contribution to human faecal mass. J. Med. Microbiol. 1980; 13: 45–56
  • Cabotaje L. M., Lpez-Guisa J. M., Shinnick F. L., Marlett J. A. Neutral sugar composition and gravimetric yield of plant and bacterial fractions of feces. Appl. Environ. Microbiol. 1990; 56: 1786–1792
  • Mallett A. K., Bearne C. A., Rowland I. R., Farthing M. J. G., Cole C. B., Fuller R. The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J. Appl. Bacteriol. 1987; 63: 39–45
  • Benno Y., Endo K., Miyoshi H., Okuda T., Koishi H., Mitsuoka T. Effect of rice fiber on human fecal microflora. Microbiol. Immunol. 1989; 33: 435–440
  • Moore W. E. C., Moore L. V. H., Cato E. P., Wilkins T. D., Kornegay E. T. Effect of high-fiber and high-oil diets on the fecal flora of swine. Appl. Environ, Microbiol. 1987; 53: 1638–1644
  • Draser B. S. The bacterial flora of the stomach and small intestine. Gastroenterol. Clin. Biol. 1989; 13: 18B–20B
  • Bock K. W., Lilienblum W., Fischer G., Schirmer G., Bock-Hennig B. S. The role of conjugation reactions in detoxication. Arch. Toxicol. 1987; 60: 22–29
  • Moldeus P. Metabolic activation/inactivation by conjugation reactions. Mechanisms of Cell Injury: Implications for Human Health, B. A. Fowler. John Wiley & Sons, Chichester 1987; 39–52
  • Schwenk M. Glucuronidation and sulfation in the gastrointestinal tract. Progress in Pharmacology and Clinical Pharmacology, Vol. 7/2, Intestinal Metabolism of Xenobiotics, F. M. Eichelbaum, W. Forth, U. Meyer, A. van Zweiten P. VCH Publishers, Deer-field Beach, FL 1989; 155–169
  • Biven W. S., Crawford M. P., Brewer N. R. Morphophysiology. The Laboratory Rat, H. J. Baoker, J. R. Lindsey, S. H. Weisbroth. Academic Press, New York 1979; Vol. 1: 73–103
  • Wynder E. L., Bross I. J. A study of etiological factors in cancer of the esophagus. Cancer 1961; 14: 389–413
  • The National Academy of Science Committee on Diet, Nutrition, and Cancer. The relationship of diet to cancer at specific sites. Diet, Nutrition, and Cancer, F. M. Peter. National Academic Press, Washington, DC 1982; 391–429
  • American Cancer Society. Cancer Facts & Figures—1989. American Cancer Society, Atlanta, GA 1989; 1–32
  • Druckrey H. Organospecific carcinogenesis in the digestive tract. Topics in Chemical Carcinogenesis, W. Nakahara, S. Takayama, T. Sugimura. University Park Press, Baltimore, MD 1972; 73–103
  • Stinson F. S. Animal model: Esophageal carcinoma in the rat induced with methyl-alkyl-nitrosamines. Am. J. Pathol. 1979; 96: 871–874
  • Druckrey H., Preussmann R., Ivankovic S., Schmahl D. Organ-trope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten. Z. Krebforsch. 1967; 69: 103–201
  • Lin H. J., Cahn W. C., Fong Y. Y., Newberne P. M. Zinc levels in serum, hair and tumors from patients with esophageal cancer. Nutr. Rep. Int. 1977; 15: 635–643
  • Fong L. Y. Y., Lui C. P., Ng W. L., Newberne P. M. The effect of N-nitrosodimethylamine and N-nitroso-N-benzylamine on 3H-thymidine incorporation into the DNA of target and nontarget tissues in the zinc deficient rat. Cancer Lett. 1986; 30: 61–71
  • Fong L. Y. Y., Lee J. S. K., Chan W. C., Newberne P. M. Zinc deficiency and the development of esophageal and forestomach tumors in Sprague-Dawley rats fed precursors of N-nitroso-N-benzylmethylamine. J. Natl. Cancer Inst. 1984; 71: 419–425
  • Anderson D., Blowers S. D., Craddock V. M. The effects of S9 mix from oesophagus, salivary gland and liver on the mutagenicity of the rat oesophageal carcinogen N-nitroso-N-methylaniline in theSalmonella typhimurium assay. Mutat. Res. 1981; 142: 13–18
  • Autrup H. Carcinogen metabolism in human tissues and cells. Drug. Metab. Rev. 1982; 13: 603–646
  • Autrup H., Harris C. C., Wu S-M., Bao L-Y., Pei X-F., Lu S., Sun T-T., Hsia C-C. Activation of chemical carcinogens by cultured human fetal liver, esophagus, and stomach. Chem.–Biol. Interact. 1984; 50: 15–25
  • Mehta R., Silinskas K. C., Zucker P. F., Ronen A., Heddle J. A., Archer M. C. Micronucleus formation induced in rat liver and esophagus by nitrosoamines. Cancer Lett. 1987; 35: 313–320
  • Gold B., Farber J., Rogan E. An investigation of the metabolism of N-nitroso-N-methylaniline by phenobarbital and pyrazole-induced Sprague-Dawley rat liver and esophagus derived S-9. Chem.–Biol. Interact. 1987; 61: 215–228
  • The Shorter Bergey's Manual of Determinative Bacteriology, 8th ed., J. G. Holt. Williams & Wilkins, Baltimore 1977; 356
  • Talley N. J., Zinsmeister A. R., Weaver A., DiMagno E. P., Carpenter H. A., Perez-Perez G. I., Blaser M. J. Gastric adenocarcinoma and Helicobacter pylori Infection. J. Natl. Cancer Inst. 1991; 83: 1734–1739
  • Riggan W. B., Creason J. P., Nelson W. C., Manton K. G., Woodbury M. A., Stallard E., Pellom A. C., Beaubier J. U.S. Cancer Mortality Rates and Trends, 1950–1979, Vol. IV, Maps, EPA/600/1–83/015e. US Government Printing Office, Washington DC 1987; 62–93
  • Hare W. V., Stewart H. L., Bennett J. G., Lorenz E. Tumors of the glandular stomach induced in rats by intramural injection of 20-methylcholanthrene. J. Natl. Cancer Inst. 1952; 12: 1019–1055
  • Grant R. Cancer induction in the glandular stomach of rats at sites of implanted 7, 12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 1966; 37: 353–364
  • Morris H. P., Wagner B. P., Ray F. E., Stewart H. L., Snell K. C. Comparative carcinogenic effects of N, N-2, 7-fluorenylene-bisacetamide by intraperitoneal and oral routes of administration to rats with particular reference to gastric carcinoma. J. Natl. Cancer Inst. 1962; 29: 977–1011
  • Snell K. C., Stewart H. L., Morris H. P. The sequential development of atrophy, precancerous lesions and cancer of the glandular stomach and other organs and tissues of rats ingesting N,N-2, 7-fluroenylene-bisacetamide. Gann Monogr. 1969; 8: 125–142
  • Mori K., Ohta A., Murakami T., Tamura M., Kondo M. Carcinomas of the glandular stomach and other organs of rats induced by 4-hydroxyaminoquinoline I-oxide hydrochloride. Gann 1969; 60: 627–630
  • Butler W. H., Barnes J. M. Carcinoma of the glandular stomach in rats given diets containing aflatoxin. Nature 1966; 209: 90
  • Sugimura T., Fujimura S. Tumor production in glandular stomach of rats by N-methyl-N-nitro-N-nitrosoguanidine. Nature 1967; 216: 943–944
  • Hirono I., Shibuya C. Induction of stomach cancer by a single dose of N-methyl-N-nitro-N-nitrosoguanidine through a stomach tube. Topics in Chemical Carcinogenesis, W. Nakahara, S. Takayama, T. Sugimura. University of Tokyo Press, Tokyo 1972; 121–132
  • Ekman L., Hansson E., Javu N., Carlsson E., Lundberg C. Toxicological studies on omeprazole. Scand. J. Gastroenterol. 1985; 108: 53–69
  • Poynter D., Pick C. R., Harcourt R. A., Selway S. A., Ainge G., Sporling I. W., Fluck P. A., Cook J. L. Association of long-lasting unsurmountable histamine H2 blockage and gastric carcinoid tumors in the rat. Gut 1985; 26: 1284–1295
  • Mirvish S. The etiology of gastric cancer: Intragastric nitrosamide formation and other theories. J. Natl. Cancer Inst. 1983; 71: 629–647
  • Bartsch H., Montesano R. Relevance of nitrosamines to human cancer. Carcinogenesis (Lond.) 1984; 5: 1381–1393
  • Siegers C.-P., Riemann D., Thies E., Younes M. Glutathione and GSH-dependent enzymes in the gastrointestinal mucosa of the rat. Cancer Lett. 1988; 40: 71–76
  • Hanninen O., Aitio A., Hartiala K. Gastrointestinal distribution of glucuronide synthesis and the relevant enzymes in the rat. Scand. J. Gastroent. 1968; 3: 461–464
  • Triolo A. J., Aponte G. E., Herr D. L. Induction of aryl hydrocarbon hydroxylase and forestomach tumors by benzo(a)pyrene. Cancer Res. 1977; 37: 3018–3021
  • DeFlora S. Study of 106 organic and inorganic compounds in the Salmonella/microsome test. Carcinogenesis 1981; 2: 283–298
  • Hutton J. J., Meier J., Hackney C. Comparison of the in vitro mutagenicity and metabolism of dimethylnitrosamine and benzo(a)pyrene in tissues from inbred mice treated with phenobarbital, 3-methylcholanthrene, or polychlorinated biphenyls. Mutat. Res. 1979; 66: 75–94
  • Hutton J. J., Hackney C., Meier J. Mutagenicity and metabolism of dimethylnitrosamine and benzo(a)pyrene in tissue homogenates from inbred syrian hamsters treated with phenobarbital, 3-methylcholanthrene, or polychlorinated biphenyls. Mutat. Res. 1979; 64: 363–377
  • Boyd S. C., Sasame H. A., Boyd M. R. High concentrations of glutathione in glandular stomach: Possible implications for carcinogenesis. Science 1979; 205: 1010–1012
  • Weisburger J., Marquardt H., Hirota N. Induction of cancer of the glandular stomach in rats by an extract of nitrite-treated fish. J. Natl. Cancer Inst. 1980; 64: 163–167
  • Tricker A. R., Preussman R. Carcinogenic N-nitrosamines in the diet; Occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. 1991; 259: 277–289
  • Calmels S., Bereziat J.-C., Ohshima J., Bartsch H. Bacterial formation of N-nitroso compounds from administered precursors in the rat stomach after omaprazole-induced achlorhydria. Carcinogenesis 1991; 12: 435–439
  • Schlag P., Bockler R., Ulrich H., Peter M., Merkle P., Herfarth C. Are nitrite and N-nitroso compounds in gastric juice risk factors for carcinoma in the operated stomach. Lancet 1980; i: 727–729
  • Reed P., Smith P., Haines K., House F., Walters C. Gastric juice N-nitrosamines in health and gastroduodenal disease. Lancet 1981; ii: 550–552
  • Bockler R., Meyer H., Schlag P. An experimental study on bacterial colonization, nitrite and nitrosamine production in the operated stomach. J. Cancer Res. Clin. Oncol 1983; 105: 62–66
  • De Bernardis G., Guadagni S., Pistoia M. A., Amicucci G., Masci G., Agnifili A., Carboni M. Gastric juice nitrite and bacteria in gastroduodenal disease and resected stomach. Tumori 1983; 69: 231–237
  • Stockbruger R. W., Cotton P. B., Eugenides N., Bartholomew B. A., Mill M. J., Walters C. L. Intragastric nitrites, nitrosamines and bacterial overgrowth during cimetidine treatment. Gut 1982; 23: 1048–1054
  • Furihata C., Yamawaki Y., Jin S., Moriya H., Kadama K., Matsoshima T., Ishikawa T., Takayma S., Nakadate M. Induction of unscheduled DNA synthesis in rat stomach mucosa by glandular stomach carcinogens. J. Natl. Cancer Inst. 1984; 72: 1327–1334
  • Furihata C., Matsoshima T. Use of an in vivo/in vitro unscheduled DNA synthesis for identification of organ-specific carcinogens. CRC Crit. Rev. Toxicol. 1987; 17: 245–277
  • Savov G., Donchev N. Changes in the activities of jejunal glucosidases in experimental intestinal tumorigenesis in rats fed different diets. Exp. Pathol. 1991; 42: 179–183
  • Schwartz L. R., Schwenk M. Sulfation in isolated enterocytes of guinea pig: dependence on inorganic sulfate. Biochem. Pharmacol. 1984; 33: 3353–3356
  • Cappiello M., Giuliani L., Pacifici G. M. Differential distribution of phenol and catechol sulphotransferases in human liver and intestinal mucosa. Pharmacology 1990; 40: 69–76
  • Chhabra R. S., Fouts J. R. Biochemical properties of some microsomal xenobiotic-metabolizing enzymes in rabbit small intestine. Drug Metab. Dispos. 1976; 4: 208–214
  • Vincenzaini M. T., Favilli F., Stio M., Iantomasi T. Intestinal glutathione transport system: a possible detoxication role. Biochem. Biophys. Acta 1991; 1073: 571–579
  • Chadwick R. W., Copeland M. F., Froehlich R., Cooke N., Whitehouse D. A. Interaction between γ-hexachlorocyclohexane and the gastrointestinal microflora and their effect on the absorption, biotransformation, and excretion of parathion by the rat. Agric. Food Chem. 1984; 32: 755–759
  • Chadwick R. W., Chang J., Gilligan P. H., Forehand L. R., Long J. E., Duffy M. C. Effect of lindane on nitroreductase and dechlorinase enzyme activity in the gastrointestinal tract. Toxicol. Lett. 1990; 50: 299–308
  • Chadwick R. W., Chang J., Forehand L. R., Long J. E., Duffy M. C. Effect of lindane on intestinal nitroreductase, azoreductase, β-glucuronidase, dechlorinase, and dehydrochlorinase activity. Pest. Biochem. Physiol. 1990; 38: 45–56
  • Ahmed M. K., Casida J. E., Nichols R. E. Bovine metabolism of organophosphorus insecticides: Significance of rumen fluid with particular reference to parathion. Agric. Food Chem. 1958; 6: 740–746
  • Chadwick R. W., George S. E., Chang J., Kohan M. J., Dekker J. P., Long J. E., Duffy M. C., Williams R. W. Potentiation of 2, 6-dinitrotoluene genotoxicity in Fischer 344 rats by pretreatment with pentachlorophenol. Pest. Biochem, Physiol. 1991; 39: 168–181
  • Druckrey H., Preussman R., Matzkies F., Ivankovic S. Selektive Erzeugung von Darmkrebs bei Ratten durch 1, 2-Dimethyl-Hydrazin. Naturwissenschaften 1967; 54: 285–286
  • Madara J., Harte P., Deasy J., Ross D., Lahey St. T., Steel G. Evidence for adenoma–carcinoma sequence in dimethylhydrazine-induced neoplasms of rat intestinal epithelium. Am. J. Pathol. 1983; 110: 230–235
  • Reddy B., Karisawa T., Wright P., Vukisich D., Weisburger J., Wynder E. Colon carcinogenesis with azozymethane and dimethylhydrazine in germ-free rats. Cancer Res. 1975; 35: 287–290
  • Ward M. Morphogenesis of chemically induced neoplasms of the colon and small intestine in rats. Lab Invest. 1974; 30: 505–513
  • Fourage M. Metabolism of 2-aminofluorene by rat small intestinal fractions: differential effect of intragastric versus intraperitoneal administration of 3-methylcholanthrene. Toxicol. Lett. 1986; 30: 209–217
  • Fourage M., Mercier M., Poncelet F. Mutagenicity of 3 aromatic amines in the presence of fractions from various tissues. Toxicol. Lett. 1982; 11: 313–320
  • Fourage M., Mercier M., Poncelet F. Liver, kidney and small intestine microsomal-mediated mutagenicity of carcinogenic aromatic amines. Mutat. Res. 1984; 125: 23–31
  • Walters J. M. Characterization of a microsomal fraction from rat small intestine for metabolic activation of some promutagens. Carcinogenesis 1985; 6: 1415–1420
  • Walters J. W., Combes R. D. Activation of benzo(a)pyrene and aflatoxin B1 to mutagenic chemical species by microsomal preparations from rat liver and small intestine in relation to microsomal epoxide hydrolase. Mutagenesis 1986; 1: 45–48
  • de Waziers I., Decloitre F. Formation of mutagenic derivatives from tryptophan pyrolysis products (Trp-P-1 and Trp-P-2) by rat intestinal S9 fraction. Mutat. Res. 1983; 119: 103–108
  • de Waziers I., Decloitre F. Effect of glutathione and uridine-5α-diphosphoglucuronic acid on the mutagenicity of tryptophan pyrolysis products (Trp-P-1 and Trp-P-2) by rat liver and intestine S9 fraction. Mutat. Res. 1984; 139: 15–19
  • Hartiala K. Metabolism of hormones, drugs, and other substances by the gut. Physiol. Rev. 1973; 53: 496–534
  • Hartiala K. Reactions to environmental agents. Handbook of Physiology, Section 9, D. H. K. Lee, H. L. Falk, S. D. Murphy, S. R. Geiger. American Physiology Society, Washington, DC 1977; 375–388
  • Cummings J. H., Banwell J. G., Segal I., Coleman N., Englyst H. N., Macfarlane G. T. The amount and composition of large bowel contents in man. Gastroenterology 1990; 98: A408
  • Finegold S. M., Sutter V. L., Mathisen G. E. Normal indigenous intestinal flora. Human Intestinal Microflora in Health and Disease, D. J. Hentges. Academic Press, London 1983; 3–31
  • Doll R. The geographical distribution of cancer. Br. J. Cancer 1969; 23: 1–8
  • Draser B. S., Irving D. Environmental factors and cancer of the colon and breast. Br. J. Cancer 1973; 27: 167–172
  • Morotomi M., Guillem J. C., LoGerfo P., Weinstein I. B. Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Res. 1990; 50: 3595–3599
  • Rosenberg D. W. Tissue-specific induction of the carcinogen-inducible cyochrome P-450 isoform, P-450IAI, in colonic epethelium. Arch. Biochem. Biophys. 1991; 284: 223–226
  • Peters W. H. M., Kock L., Nagengast F. M., Kremers P. G. Biotransformation enzymes in human intestine: Critical low levels in the colon. Gut 1991; 32: 408–412
  • Siegers C.-P. Glutathione and GSH-dependent enzymes. Progress in Pharmacology and Clinical Pharmacology, Vol. 7/2, Intestinal Metabolism of Xenobiotics, F. M. Eichelbaum, W. Forth, U. Meyer, P. A. van Zweiten. VCH Publishers, Deerfield Beach, FL 1989; 171–180
  • Koster A. Sj., Frankhuizen-Sierevogel A. C., Noordhoek J. Distribution of glucuronidation capacity (l-naphtol and morphine) along the rat intestine. Biochem. Pharmacol. 1985; 34: 3527–3532
  • Ward F. W., Coates M. E., Walker R. Nitrate reduction, gastrointestinal pH and N-nitrosation in gnotobiotic and conventional rats. Food Chem. Toxicol. 1986; 24: 17–22
  • Rafii F., Franklin W., Heflich R. H., Cerniglia C. E. Reduction of nitroaromatic compounds by anaerobic bacteria isolated from the human gastrointestinal tract. Appl. Environ. Microbiol. 1991; 57: 962–968
  • MacDonald I. A., Bussard R. G., Hutchison D. M., Holdeman L. V. Rutin-induced β-glucosidase activity in Streptococcus faecium VGH-I andStreptococcus sp. strain FRP-17 isolated from human feces: Formation of the mutagen, quercetin, from rutin. Appl. Environ. Microbiol. 1984; 47: 350–355
  • Gorbach S. L. The intestinal microflora and its colon cancer connection. Infection 1982; 10: 379–384
  • Rowland I. R., Mallett A. K., Bearne C. A., Farthing M. J. G. Enzyme activities of the hindgut microflora of laboratory animals and man. Xenobiotica 1986; 16: 519–523
  • Heflich R. H., Howard P. C., Beland E. A. l-nitrosopyrene: An intermediate in the metabolic activation of l-nitropyrene to a mutagen in Salmonella typhimurium TA1538. Mutat. Res. 1985; 149: 25–32
  • Manning B. W., Cerniglia C. E., Federle T. W. Biotransformation of l-nitropyrene to l-aminopyrene and N-formyl-l-aminopyrene by the human intestinal microbiota. J. Toxicol. Environ. Health 1986; 18: 339–346
  • Cerniglia C. E., Howard P. C., Fu P. P., Franklin W. Metabolism of nitropolycyclic aromatic hydrocarbons by human intestinal microflora. Biochem. Biophys. Res. Commun. 1984; 123: 262–270
  • Howard P. C., Beland F. A., Cerniglia C. E. Reduction of the carcinogen l-nitropyrene to l-aminopyrene by rat intestinal bacteria. Carcinogenesis 1983; 4: 985–990
  • Cerniglia C. E. Metabolism of l-nitropyrene and 6-nitrobenzo(a)pyrene by intestinal microflora. Prog. Clin. Biol. Res. 1985; 181: 133–137
  • Kinouchi T., Ohnishi Y. Metabolic activation of l-nitropyrene and 1, 6-dinitropyrene by nitroreductases from Bacteroides fragilis and distribution of nitroreductase activity in rats. Microbiol. Immunol. 1986; 30: 979–992
  • Ball L. M., Rafter J. J., Gustafsson J. A., Gustafsson B. E., Kohan M. J., Lewtas J. Formation of mutagenic urinary metabolites from l-nitropyrene in germ-free and conventional rats: Role of the gut flora. Carcinogenesis 1991; 12: 1–5
  • Kinouchi T., Morotomi M., Mutai M., Fifer E. K., Beland F. A., Ohnishi Y. Metabolism of l-nitropyrene in germ-free and conventional rats. Jpn. J. Cancer Res. (Gann) 1986; 77: 356–369
  • Fu P. P., Cerniglia C. E., Richardson K. E., Heflich R. H. Nitroreduction of 6-nitrobenzo[a]pyrene: A potential activation pathway in humans. Mutat. Res. 1988; 209: 123–129
  • Richardson K. E., Fu P. P, Cerniglia C. E. Metabolism of 1-, 3-, and 6-nitrobenzo[a]pyrene by intestinal microflora. J. Toxicol. Environ. Health 1988; 23: 527–537
  • Manning B. W., Campbell W. L., Franklin W., Delclos K. B., Cerniglia C. E. Metabolism of 6-nitrochrysene by intestinal micro-flora. Appl. Environ. Microbiol. 1988; 54: 197–203
  • Reddy B. G., Pohl L. R., Krishna G. The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats. Biochem. Pharmacol. 1976; 25: 1119–1122
  • Guest D., Schnell S. R., Rickert D. E., Dent J. G. Metabolism of 2, 4-dinitrotoluene by intestinal microorganisms from rat, mouse, and man. Toxicol. Appl. Pharmacol. 1982; 64: 160–168
  • Levin A. A., Dent J. G. Comparison of the metabolism of hepatic microsomes and cecal microflora from Fischer 344 rats in vitro and the relative importance of each. in vivo, Drug Metab. Dispos. 1982; 10: 450–454
  • Doolittle D. J., Sherrill J. M., Butterworth B. E. Influence of intestinal bacteria, sex of the animal, and position of the nitro group on the hepatic genotoxicity of nitrotoluene isomers. in vivo, Cancer Res. 1983; 43: 2836–2842
  • Rickert D. E., Butterworth B. E., Popp J. A. Dinitrotoluene: Acute toxicity, oncogenicity, genotoxicity, and metabolism. CRC Crit. Rev. Toxicol. 1984; 13: 217–234
  • Miller L., Corrie M., Midtvedt T., Rafter J., A Gustafsson J. The role of the intestinal microflora in the formation of mutagenic metabolites from the carcinogenic air pollutant 2-nitrofluorene. Carcinogenesis 1988; 9: 823–830
  • Miller L., Rafter J., Gustafsson J. A. Metabolism of the carcinogenic air pollutant 2-nitrofluorene in the rat. Carcinogenesis 1987; 8: 637–645
  • Chung K. T. The significance of azo reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat. Res. 1983; 114: 269–281
  • Ashby J., Tennant R. W. Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indictors of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat. Res. 1988; 204: 17–115
  • Hartman C. P., Andrews A. W., Chung K. T. Production of mutagen from Ponceau 3R by a human intestinal anaerobe. Infect. Immun. 1979; 23: 686–689
  • Cerniglia C. E., Freeman J. P., Franklin W., Pack L. D. Metabolism of benzidine and benzidine-congener based dyes by human, monkey and rat intestinal bacteria. Biochem. Biophys. Res. Commun. 1982; 107: 1224–1229
  • Cerniglia C. E., Freeman J. P., Franklin W., Pack L. D. Metabolism of azo dyes derived from benzidine, 3,3α-dimethylbenzidine and 3,3α-dimethoxybenzidine to potentially carcinogenic aromatic amines by intestinal bacteria. Carcinogenesis 1982; 3: 1255–1260
  • Cerniglia C. E., Zhuo Z., Manning B. W., Federle T. W., Heflich R. H. Mutagenic activation of the benzidine-based dye Direct Black by human intestinal microflora. Mutat. Res. 1986; 175: 11–16
  • Rafii F., Franklin W., Cerniglia C. E. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 1990; 56: 2146–2151
  • Chung K. T., Fulk G. E., Egan M. Reduction of azo dyes by intestinal anaerobes. Appl. Environ. Microbiol. 1978; 35: 558–562
  • Chung K. T., Stevens S. E., Jr., Cerniglia C. E. The reduction of azo dyes by the intestinal microflora. Crit. Rev. Microbiol. 1992; 18: 175–190
  • Bokkenheuser V. D., Shackleton C. H. L., Winter J. Hydrolysis of dietary flavonoid glycosides by strains of intestinal bacteroides from humans. Biochem. J. 1987; 248: 953–956
  • Hawksworth G., Drasar B. S., Hill M. J. Intestinal bacteria and the hydrolysis of glycoside bonds. J. Med. Microbiol. 1971; 4: 451–459
  • Morotomi M., Nanno M., Watanabe T., Sakurai T., Mutai M. Mutagenic activation of biliary metabolites of l-nitropyrene by intestinal microflora. Mutat. Res. 1985; 149: 171–178
  • Chang G. W., Brill J., Lum R. Proportion of β-D-glucuronidase-negative Escherichia coli in human fecal samples. Appl. Environ. Microbiol. 1989; 55: 335–339
  • Feng P. C. S., Hartman P. A. Fluorogenic assays for immediate confirmation of. E. coli, Appl. Environ. Microbiol. 1982; 43: 1320–1329
  • Hansen W., Yourassowsky E. Detection of β-glucuronidase in lactose fermenting members of the enterobacteriaceae and its presence in bacterial urine cultures. J. Clin. Microbiol. 1984; 20: 1177–1179
  • Perez J. L., Berrocal C. I., Berrocal L. Evaluation of a commercial β-glucuronidase test for the rapid and economical identification of. Escherichia coli, J. Appl. Bacteriol. 1986; 61: 541–545
  • Jacox R. F. Streptococcal β-glucuronidase. J. Bacteriol. 1953; 65: 700–705
  • Schultz-Haudt S. D., Scherp H. W. Production of hyaluronidase and β-glucuronidase by viridans streptococci isolated from the gingival crevice. J. Dental Res. 1955; 34: 924–929
  • Rod T. O., Haug R. H., Mistvedt T. β-glucuronidase in the streptococcal groups b and D. Acta Pathol. Microbiol. Immunol. Scand. 1974; 82: 533–536
  • Barber M., Brooksband B. W. L., Kaper S. W. A. Staphylococcal phosphatase, glucuronidase and sulfatase. J. Pathol. Bacteriol. 1951; 63: 57–64
  • Sarhan H. R., Foster H. A. A rapid flurogenic method for the detection of Escherichia coli by the production of β-glucuronidase. J. Appl. Bacteriol. 1991; 70: 394–400
  • LeMinor L. Tetrathionet reductase, β-glucuronidase, and ONPG test in the genus. Salmonella, Zentrabl. Bakteriol. Mikrobiol. Hygiene 1979; A243: 321–325
  • Lai D. Y., Woo Y. Naturally occurring carcinogens: An overview. Environ. Carcinog. Rev. 1987; C5: 121–173
  • Reuff J., Laires A., Gaspar J., Rodrigues A. Mutagenic activity in the wine-making process: correlations with rutin and quercetin levels. Mutagenesis 1990; 5: 393–396
  • Brown J. P., Dietrich P. S. Mutagenicity of plant flavonols in the Salmonella/mammalian microsome test. Mutat. Res. 1979; 66: 223–240
  • Pamukcu A. M, Yaliner S., Hatcher J. F., Bryan G. T. Quercetin, a rat intestinal and bladder carcinogen present in bracken fern (Pteridium aquilinum). Cancer Res. 1980; 40: 3468–3472
  • Mallett A. K., Bearne C. A., Lake B. G., Rowland I. R. Modified mutagen activation in hepatic fractions from rats fed dietary rutin-interaction between gut flora and host metabolism. Food Chem. Toxicol. 1989; 27: 607–611
  • Laires A., Pacheco P, Rueff J. Mutagenicity of rutin and the glycosidic activity of cultured cell-free microbial preparations of human faeces and saliva. Food Chem. Toxicol. 1989; 27: 437–443
  • Spatz M., Smith D. W. E., McDaniel E. G., Laqueur G. L. Role of intestinal microorganisms in determining cycasin toxicity. Proc. Soc. Exp. Biol. Med. 1967; 124: 691–697
  • MacGregor J. T., Jurd L. Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in. Salmonella typhimurium, Mutat. Res. 1978; 54: 297–309
  • Weisburger J. H. Colon carcinogens: Their metabolism and mode of action. Cancer 1971; 28: 60–70
  • Reddy B. S., Weisburger J. H., Narisawa T., Wynder E. L. Colon carcinogenesis in germ free rats treated with 1,2-dimethylhydrazine and N-methyl-N-nitro-N-nitrosoguanidine. Cancer Res. 1974; 34: 2368–2372
  • Mastromarino A., Reddy B. S., Wynder E. L. Metabolic epidemiology of colon cancer: Enzymic activity of fecal flora. Am. J. Clin. Nutr. 1976; 29: 1455–1460
  • Mastromarino A. J., Reddy B. S., Wynder E. L. Fecal profiles of anerobic microflora of large bowel cancer patients with nonhereditary large bowel polyps. Cancer Res. 1978; 38: 4458–4462
  • Sjovall J. Bile acids in man under normal and pathological conditions: Bile acids and steroids 73. Clin. Chim. Acta. 1960; 5: 33–41
  • Carey J. B., Jr. Bile salt metabolism in man. The Bile Acids, P. P. Nair, D. Kritchevsky. Plenum, New York 1973; Vol. 2: 62–63
  • MacDonald I. A., Webb G. R., Mahoney D. C. Fecal hydroxysteroid dehydrogenase activities in vegetarian Seventh-Day Adventists, control subjects and bowel cancer subjects. Am. J. Clin. Nutr. 1978; 31: 5233–5238
  • Stellwag E. J., Hylemon P. B. 7-α-Dehydoxylation of cholic acid and chenodeoxycholic acid by. Clostridium leptum, J. Lipid Res. 1979; 20: 325–333
  • Hirano S., Nakama R., Tamaki M., Masuda N., Oda H. Isolation and characterization of thirteen intestinal microorganisms capable of 7-α-dehydroxylating bile acids. Appl. Environ. Microbiol. 1981; 41: 737–745
  • Hylemon P. B., Sherrod J. A. Multiple forms of 7-α-hydroxysteroid dehydrogenase in selected strains of. Bacteroides fragilis, J. Bacteriol. 1975; 122: 418–424
  • MacDonald I. A., Williams C. N., Mahony D. E., Christie W. M. NAD- and NADP-dependent 7-α-hydroxysteroid dehydrogenase from. Bacteroides fragilis, Biochim, Biophys. Acta 1975; 384: 12–24
  • Sherrod J. A., Hylemon P. B. Parial purification and characterization of NAD-dependent 7α-hydroxysteroid dehydrogenase from. Bacteroides thetaiotaomicron, Biochim. Biophys. Acta 1977; 486: 351–358
  • Prabha V., Gupta M., Seiffge D., Gupta K. G. Purification of 7-α-hydroxysteroid dehydrogenase from Escherichia coli strain 080. Can. J. Microbiol. 1990; 36: 131–135
  • White B. A., Lipsky R. H., Fricke R. J., Hylemon P. B. Bile acid induction specificity of 7-α-hydroxylase activity in an intestinal. Eubacterium species, Steroids 1980; 35: 103–109
  • Baron S. F., Franklund C. V., Hylemon P. B. Cloning, sequencing, and expression of the gene coding for bile acid 7-α-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J. Bacteriol. 1991; 173: 4558–4569
  • Bryant C., DeLuca M. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from. Enterobacterer cloacae, J. Biol. Chem. 1991; 266: 4119–4125
  • Prival M. J. Carcinogens and mutagens present as natural components of food or induced by cooking. Nutrition and Cancer 1985; 6: 236–253
  • Balish E. Intestinal flora and natural immunity. Microecology and Therapy 1986; 16: 157–167
  • Rowland I. R., Walker R. The gastrointestinal tract in food toxicology. Toxic Hazards in Food, D. M. Conning, A. B. G. Lansdown. Croom Helm, London 1983; 183–274
  • Cole C. B., Fuller R., Mallett A. K., Rowland I. R. The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J. Appl. Bacteriol. 1985; 59: 549–553
  • Wostmann B. S. Other organs. The Germ-Free Animal in Biomedical Research, M. E. Coates, B. E. Gusstafsson. Laboratory Animals, London 1984; 215–231
  • Rowland I. R., Mallett A. K., Cole C. B., Fuller R. Mutagen activation by hepatic fractions from conventional, germfree, and monoassociated rats. Arch. Toxicol. (Suppl.) 1987; 11: 261–263
  • Rowland I. R. Interactions of the gut microflora and the host in toxicology. Toxicol. Pathol. 1988; 16: 147–153
  • Mizutani T., Mitsuoka T. Effect of intestinal bacteria on incidence of liver tumors in gnotobiotic C3H/He male mice. J. Natl. Cancer Inst. 1979; 63: 1365–1370
  • Mizutani T., Mitsuoka T. Relationship between liver turmorigenesis and intestinal bacteria in gnotobiotic C3H/He male mice. Recent Advances in Germfree Research, S. Sasaki. Tokai University Press, Tokyo 1981; 639–644
  • Mizutani T., Mitsuoka T. Effect of konjac mannan on spontaneous liver tumorigenesis and fecal flora in C3H/He male mice. Cancer Lett. 1982; 17: 27–32
  • Tasich M., Piper D. W. Effect of human colonic microsomes and cell-free extracts of Bacteroides fragilis on the mutagenicity of 2-aminoanthracene. Gastroenterology 1983; 85: 30–34
  • Leonard T. B., Graichen M. E., Popp J. A. Dinitrotoluene isomer-specific hepatocarcinogenesis in F344 rats. J. Natl. Cancer Inst. 1987; 79: 1313–1319
  • George S. E., Chadwick R. W., Creason J. P., Kohan M. J., Dekker J. P. Effect of pentachlorophenol on the activation of 2,6-dinitrotoluene to genotoxic urinary metabolites in CD-1 mice: A comparison of GI enzyme activities and urine mutagenicity. Environ. Molec. Mutag. 1991; 18: 92–101
  • Vizethum W., Goerz G. Induction of the Hepatic microsomal and nuclear cytochrome P-450 system by hexachlorobenzene, pentachlorophenol, and trichlorophenol. Chem.–Biol. Interact. 1979; 28: 291–299
  • Cunningham M., Burka L. T., Matthews H. B. Metabolism, disposition, and mutagenicity of 2,6-diaminotoluene, a mutagenic noncarcinogen. Drug Metab. Dispos. 1989; 17: 612–617
  • Dybing E., Thorgeirsson S. S. Metabolic activation of 2,4-diaminoanisole, a hair-dye component. Biochem. Pharmacol. 1977; 26: 729–734
  • Chadwick R. W., George S. E., Chang J., Kohan M. J., Allison J., Hayes Y., Crownover E. Aroclor 1254 alters intestinal enzyme activity and biotransformation of 2,6-dinitrotoluene in rats. Toxicologist 1991; 11: 255
  • Herrmann K. Flavonols and flavones in food plants: A review. J. Food Technol. 1976; 11: 433–448
  • IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Some Food Additives, Feed Additives, and Naturally Occurring Substances. IARC, Lyon 1983; Vol. 31: 33–46
  • Slaga T. J., Bracken W. M., Viaje A., Berry D. L., Fischer S. M., Miller D. R. Lack of involvement of 6-hydroxymethylation in benzo(a)pyrene skin tumor initiation in mice. J. Natl. Cancer Inst. 1978; 61: 451–455
  • IARC. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Some Naturally Occurring Substances. IARC, Lyon 1976; Vol. 10: 121–138
  • Gabridge M. G., Denunzio A., Legator M. S. Cycasin: Detection of associated mutagenic activity. in vivo, Science 1969; 163: 689–691
  • IARC. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Some Naturally Occurring and Synthetic Food Components, Furocoumarins and Ultraviolet Radiation. IARC, Lyon 1986; Vol. 40: 121–138
  • Sugimura T. Food as source of complex mixtures of mutagens and carcinogens. IARC Sci. Publ. 1990; 104: 399–407
  • van S. J., Rensburg C. C., van Schalkwyk, van Schalkwyk D. J. Primary liver cancer and aflatoxin intake in Transhei. J. Environ. Pathol. Toxicol. Oncol. (USA) 1990; 10: 11–16
  • Palmer S., Mathews R. A. The role of non-nutritive dietary constituents in carcinogenesis. Surg. Clin. North Am. 1986; 66: 891–915
  • Ames B. N., Profet M., Gold L. S. Dietary pesticides (99.99% all natural). Proc. Natl. Acad. Sci. USA 1990; 87: 7777–7781
  • Stich H. F. The beneficial and hazardous effects of simple phenolic compounds. Mutat. Res. 1991; 259: 307–324
  • Yamada K., Shirahata S., Murakami H., Nishiyama K., Shinohara K., Omura H. DNA breakage by phenol compounds. Agric. Biol. Chem. 1985; 49: 1423–1428
  • Hirose M., Kurata Y., Tsuda H., Fukushima S., Ito N. Catechol strongly enhances rat stomach carcinogenesis: A possible new environmental stomach carcinogen. Jpn. J. Cancer Res. (Gann) 1987; 78: 1144–1149
  • Hirose M., Masuda A., Imaida K., Kagawa M., Tsuda H., Ito N. Induction of forestomach lesions in rats by oral administration of naturally-occurring antioxidants for 4 weeks. Jpn. J. Cancer Res. (Gann) 1987; 78: 317–321
  • Lesca P. Protective effects of ellagic acid and other plant phenols on benzo(a)pyrene neoplasia in mice. Carcinogenesis 1983; 5: 309–313
  • Lauer K. The history of nitrite in human nutrition: a contribution from German cookery books. J. Clin. Epidemiol. (England) 1991; 44: 261–264
  • Shirai T., Fukushima S., Kawabe M., Shibata M., Iwasaki S., Tada M., Ito N. Selective induction of rat urinary bladder tumors by simultaneous administration of 3,2α-dimethyl-4-aminobiphenyl (DMAB) and butylated hydroxyanisole or butylated hydroxytoluene is associated with increased DMAB-DNA adduct formation. Carcinogenesis 1991; 12: 1335–1339
  • Ito N., Fukushima S., Tsuda H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit. Rev. Toxicol. 1985; 15: 109–150
  • FDA. Residues in Foods: 1989. J. Assoc. Off. Anal. Chem. 1990; 73: 127A–146A
  • Epstein S. S. The chemical jungle: Today's beef industry. Int. J. Health Serv. 1990; 20: 277–280
  • Meier J. R. Genotoxic activity of organic chemicals in drinking water. Mutat. Res. 1988; 196: 211–246
  • Sugimura T. M., Nagao M., Kawachi T., Honda M., Yahagi T., Seino Y., Sata S., Matsukura N., Matsushima T., Shirai A., Sawamura M., Matsumoto H. Mutagen–Carcinogens in foods with special reference to highly mutagenic pyrolytic products in broiled foods. Origins of Human Cancer, H. H. Hiatt, J. D. Watson, J. A. Winston. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 1977; 1451–1577
  • Felton J. S., Knize M. G. Occurrence, identification, and bacterial mutagenicity of heterocyclic amines in cooked food. Mutat. Res. 1991; 259: 205–217
  • Lijinsky W. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 1991; 259: 251–261
  • Shirname-More L. Forward mutation of S. typhimurium by smokeless tobacco extracts. Mutat. Res. 1991; 259: 37–42
  • Povey A. C., Schiffman M., Taffe B. G., Harris C. C. Laboratory and epidemiologic studies of fecapentaenes. Mutat. Res. 1991; 259: 387–397
  • Van Tassell R. L., Kingston D. G. I., Wilkins T. D. Metabolism of dietary genotoxins by the human colonic microflora: the fecapantaenes and heterocyclic amines. Mutat. Res. 1990; 238: 209–221
  • Weisburger J. H., Jones R. C., Wang C. X., Backlund J.-Y. C., Williams G. M., Kingston G. G. I., Van Tussell R. L., Keyes R. F., Wilkins T. D., de Wit P. P., van der Steeg M., van der Gen A. Carcinogenicity tests of fecapentaene-12 in mice and rats. Cancer Lett. 1990; 49: 89–98
  • Tesoriero A. A., Roxon J. J. [35S]Cyclamate metabolism: Incorporation of 35S into protein of intestinal bacteria in vitro and production of volatile 35S-containing compounds. Xenobiotica 1975; 5: 25–31
  • Walters J. M., Combes R. D. Characterization of a microsomal fraction from rat small intestine for metabolic activation of some promutagens. Carcinogenesis 1985; 6: 1415–1420
  • Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res. 1982; 42: 4875–4917
  • Guengerich F. P. Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res. 1988; 48: 2946–2954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.