31
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Drug Metabolism: From Experiments to Regulatory Aspects

Pages 853-886 | Published online: 15 Feb 2010

References

  • Kaufmann R. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: A novel analytical tool in molecular biology and biotechnology. J. Biotechnol. 1995; 41: 155–175
  • Nguyen D. N., Becker G. W., Riggin R. M. Protein mass spectrometry: Applications to analytical biotechnology. J. Chromatogr. A. 1995; 705: 21–45
  • Gelpi E. Biomedical and biochemical applications of liquid chromatography-mass spectrometry. J. Chromatogr. A. 1995; 703: 59–80
  • Patterson S. D. From electrophoretically separated protein to identification: Strategies for sequence and mass analysis. Anal. Biochem. 1994; 221: 1–15
  • Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nanoelectrospray mass spectrometry. Nature 1996; 379: 466–469
  • Toon S. The relevance of pharmacokinetics in the development of biotechnology products. Eur. J. Drug Metab. Pharmacokinet. 1996; 21: 93–103
  • Birkett D. J., Mackenzie P. I., Veronese M. E., Miners J. O. In vitro approaches can predict human drug metabolism. Trends Pharmacol. Sci. 1993; 14: 292–294
  • Cholerton S., Daly A. K., Idle J. R. The role of individual human cytochromes P450 in drug metabolism and clinical response. Trends Pharmacol. Sci. 1992; 13: 434–439
  • Guengerich F. P., Muller D., Blair I. A. Oxidation of quinidine by human liver cytochrome P-450. Mol. Pharmacol. 1986; 30: 287–295
  • Doecke C. J., Veronese M. E., Pond S. M., Miners J. O., Birkett D. J., Sansom L. N., Mc M. E. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes. Br. J. Clin. Pharmacol. 1991; 31: 125–130
  • Buchert E., Woosley R. L. Clinical implications of variable antiarrhythmic drug metabolism. Pharmacogenetics 1992; 2: 2–11
  • Gross A. S., Mikus G., Fischer C., Hertrampf R., Gundert U., Eichelbaum M. Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype. Br. J. Clin. Pharmacol. 1989; 28: 555–566
  • Eichelbaum M., Gross A. S. The genetic polymorphism of debrisoquine/sparteine metabolism—Clinical aspects, Pharmacol. Ther. 1990; 46: 377–394
  • Butler M. A., Lang N. P., Young J. F., Caporaso N. E., Vineis P., Hayes R. B., Teitel C. H., Massengill J. P., Lawsen M. F., Kadlubar F. F. Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 1992; 2: 116–127
  • Wilkinson G. R., Guengerich F. P., Branch R. A. Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol. Ther. 1989; 43: 53–76
  • Aoyama T., Yamano S., Waxman D. J., Lapenson D. P., Meyer U. A., Fischer V., Tyndale R., Inaba T., Kalow W., Gelboin H. V. Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. J. Biol. Chem. 1989; 264: 10388–10395
  • Blum M., Demierre A., Grant D. M., Heim M., Meyer U. A. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc. Natl. Acad. Sci. USA 1991; 88: 5237–5241
  • Gonzalez F. J., Idle J. R. Pharmacogenetic phenotyping and genotyping. Present status and future potential. Clin. Pharmacokinet. 1994; 26: 59–70
  • Honkakoski P., Auriola S., Lang M. A. Distinct induction pro-files of three phenobarbital-responsive mouse liver cytochrome P450 isozymes. Biochem. Pharmacol. 1992; 43: 2121–2128
  • Guengerich F. P., Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 1991; 4: 391–407
  • Park B. K., Kitteringham N. R., Pirmohamed M., Tucker G. T. Relevance of induction of human drug-metabolizing enzymes: Pharmacological and toxicological implications. Br. J. Clin. Pharmacol 1996; 41: 477–491
  • Caccia S., Garattini S. Formation of active metabolites of psychotropic drugs. An updated review of their significance. Clin. Pharmacakinet. 1990; 18: 434–459
  • Caccia S., Garattini S. Pharmacokinetic and pharmacodynamic significance of antidepressant drug metabolites. Pharmacol. Res. 1992; 26: 317–329
  • Garattini S., Caccia S., Carli M., Mennini T. Notes on kinetics and metabolism of benzodiazepines. Adv. Biosci. 1981; 31: 351–364
  • Garattini S., Mussini E., Randall L. O. The Benzodiazepines. Raven Press, New York 1973
  • Caccia S., Muglia M., Mancinelli A., Garattini S. Disposition and metabolism of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine in the rat. Xenobiotica 1983; 13: 147–153
  • Caccia S., Fong M. H., Guiso G. Disposition of the psychotropic drugs buspirone, MJ-13805 and piribedil, and of their common active metabolite 1-(2-pyrimidinyl)piperazine in the rat. Xenobiotica 1985; 15: 835–844
  • Nemeroff C. B., De C. L., Pollock B. G. Newer antidepressants and the cytochrome P450 system. Am. J. Psychiatry 1996; 153: 311–320
  • Brosen K. The pharmacogenetics of the selective serotonin reuptake inhibitors. Clin. Invest. 1993; 71: 1002–1009
  • Bloomer J. C., Woods F. R., Haddock R. E., Lennard M. S., Tucker G. T. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br. J. Clin. Pharmacol. 1992; 33: 521–523
  • van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin. Pharmacokinet. 1993; 24: 203–220
  • Caccia S., Fracasso C., Garattini S., Guiso G., Sarati S. Effects of short- and long-term administration of fluoxetine on the monoamine content of rat brain. Neuropharmacology 1992; 31: 343–347
  • Garattini S., Bizzi A., Caccia S., Mennini T. Progress report on the anorectic effects of dexfenfluramine, fluoxetine and sertraline. Int. J. Obes. Relat. Metab. Disord. 1992; 16(Suppl. 3)S43–S50
  • Caccia S., Confalonieri S., Bergami A., Fracasso C., Anelli M., Garattini S. Neuropharmacological effects of low and high doses of repeated oral dexfenfluramine in rats. A comparison with fluoxetine. Pharmacol. Biochem. Behav, in press
  • Tremaine L. M., Welch W. M., Ronfeld R. A. Metabolism and disposition of the 5-hydroxytryptamine uptake blocker sertraline in the rat and dog. Drug Metab. Dispos. Biol. Fate. Chem. 1989; 17: 542–550
  • Shah R. R. Clinical pharmacokinetics: Current requirements and future perspectives from a regulatory point of view. Xenobiotica 1993; 23: 1159–1193
  • Garattini S., Mennini T., Samanin R. From fenfluramine race-mate to d-fenfluramine. Specificity and potency of the effects on the serotoninergic system and food intake. Ann NY Acad. Sci. 1987; 499: 156–166
  • Garattini S., Mennini T., Samanin R. Advance in understanding the role of serotonin in controlling food intake. Recent Advances in Obesity Research. V. John Libbey, London 1987; 272–284
  • Mennini T., Garattini S., Caccia S. Anorectic effect of fenfluramine isomers and metabolites: Relationship between brain levels and in vitro potencies on serotonergic mechanisms. Psychopharmacology (Berl.) 1985; 85: 111–114
  • Sedvall G., Pauli S., Farde L., Karlsson P., Nyberg S., Nordstrom A. L. Recent developments in PET scan imaging of nuroreceptors in schizophrenia. Isr. J. Psychiatry Relat. Sci. 1995; 32: 22–29
  • Bartels M., Albert K. Detection of psychoactive drugs using 19F MR spectroscopy. J. Neural Transm. Gen. Sect. 1995; 99: 1–6
  • Renshaw P. F., Guimaraes A. R., Fava M., Rosenbaum J. F., Pearlman J. D., Flood J. G., Puopolo P. R., Clancy K., Gonzalez R. G. Accumulation of fluoxetine and norfluoxetine in human brain during therapeutic administration. Am. J. Psychiatry 1992; 149: 1592–1594
  • Karson C. N., Newton J. E., Mohanakrishnan P., Sprigg J., Komoroski R. A. Fluoxetine and trifluoperazine in human brain: a 19F-nuclear magnetic resonance spectroscopy study. Psychiatry Res. 1992; 45: 95–104
  • Molliver D. C., Molliver M. E. Anatomic evidence for a neurotoxic effect of (+/-)-fenfluramine upon serotonergic projections in the rat. Brain Res. 1990; 511: 165–168
  • Mc U., Hatzidimitriou G., Ridenour A., Fischer C., Yuan J., Katz J., Ricaurte G. Dexfenfluramine and serotonin neurotoxicity: further preclinical evidence that clinical caution is indicated. J. Pharmacol. Exp. Ther. 1994; 269: 792–798
  • Campbell-Brunelle B., Dard B., Caccia S. The use of pharmacokinetics in the assessment of dexfenfluramine safety. Obesity Management and Redux, S. Nicolaidis. Academic Press, San Diego 1997; 65–79
  • Mennini T., Bizzi A., Caccia S., Codegoni A., Fracasso C., Frittoli E., Guiso G., Padura I. M., Taddei C., Uslenghi A., Garattini S. Comparative studies on the anorectic activity of dfenfluramine in mice, rats, and guinea pigs. Naunyn Schmiedebergs Arch. Pharmacol. 1991; 343: 483–490
  • Caccia S., Anelli M., Fracasso C., Frittoli E., Giorcelli P., Gobbi M., Taddei C., Garattini S., Mennini T. Anorectic effect and brain concentrations of d-fenfluramine in the marmoset: Relationship to the in vivo and in vitro effects of serotonergic mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 1993; 347: 306–312
  • Latini R., Barbieri E., Castello C., Marchi S., Sica A., Gerosa G., Rossi R., Zardini P. Propafenone and 5-hydroxypropafenone concentrations in the right atrium of patients undergoing heart surgery. Am. Heart J. 1989; 117: 497–498
  • Philipsborn G., Gries J., Hofmann H. P. Pharmacological studies on propafenone and its main metabolite 5-hydroxypropafenone. Arzneimittelforschung 1984; 34: 1489–1497
  • Valenzuela C., Delgado C., Tamargo J. Electrophysiological effects of 5-hydroxypropafenone on guinea pig ventricular muscle fibres. J. Cardiovasc. Pharmacol. 1987; 10: 523–529
  • Zaza A., Forster M., Danilo P., Sodowick B., Rosen M. Electrophysiologic effects of propafenone and metabolites on canine Purkinje fibers. Fed. Proc. 1987; 46: 871–870
  • Latini R., Maggioni A. P., Cavalli A. Therapeutic drug monitoring of antiarrhythmic drugs. Rationale and current status. Clin. Pharmacokinet. 1990; 18: 91–103
  • Latini R., Magnolfi G., Zordan R., Ferrari M., Padrini R., Piovan D., Pecorari T., Bottazzi L., Guiducci U. Antiarrhythmic drug plasma concentrations in ambulatory patients. Ann. Pharmacother. 1996; 30: 298–300
  • Barbieri E., Conti F., Zampieri P., Trevi G. P., Zardini P., Latini R. Amiodarone and desethylamiodarone distribution in the atrium and adipose tissue of patients undergoing short-and long-term treatment with amiodarone. J. Am. Coll. Cardiol. 1986; 8: 210–213
  • Donelli M. G., Colombo T., Dagnino G., Madonna M., Garattini S. Is better drug availability in secondary neoplasms responsible for better response to chemotherapy?. Eur. J. Cancer 1981; 17: 201–209
  • Donelli M. G., Garattini S. Differential accumulation of anticancer agents in metastases compared with primary tumors in experimental models. Recent Advances in Cancer Treatment, H. J. Tagnon, M. J. Staquet. Raven Press, New York 1977; 177–185
  • Dincalci M. Metabolism of triazine anticancer agents. Anticancer Drugs: Reactive Metabolism and Drug Interactions, G. Powis. Pergamon Press, London 1994; 157–165
  • Damia G. Clinical pharmacokinetics of altretamine. Clin. Pharmacokinet. 1995; 28: 439–448
  • Blum R. H., Livingston R. B., Carter S. K. Hexamethylmelamine—A new drug with activity in solid tumors. Eur. J. Cancer 1973; 9: 195–202
  • Legha S. S., Slavik M., Carter S. K. Hexamethylmelamine. An evaluation of its role in the therapy of cancer. Cancer 1976; 38: 27–35
  • Wharton J. T. ldquo;Hexamethylmelamine (altretamine) activity as a single agent in previously untreated advanced ovarian cancer”. Cancer Treat. Rev. 1991; 18(Suppl. A)15–21
  • Ross D., Langdon S. P., Gescher A., Stevens M. F. Studies of the mode of action of antitumour triazenes and triazines. V. The correlation of the in vitro cytotoxicity and in vivo antitumour activity of hexamethylmelamine analogues with their metabolism. Biochem. Pharmacol. 1984; 33: 1131–1136
  • Miller K. J., Mc R. M., Ames M. M. Effect of a hepatic activation system on the antiproliferative activity of hexamethylmelamine against human tumor cell lines. Cancer Chemother. Pharmacol. 1985; 15: 49–53
  • Miller-Hatch K. J., Ames M. M., Kovach J. S. Cytotoxic activity of hexamethylmelamine (HMM) in human tumor cell lines in the presence of rat hepatic preparations 1983; 247
  • Collins J. M., Grieshaber C. K., Chabner B. A. Pharmacologically guided phase I clinical trials based upon preclinical drug development. J. Natl. Cancer Inst. 1990; 82: 1321–1326
  • EORTC Pharmacokinetics and Metabolism Group. Pharmacokinetically guided dose escalation in phase I clinical trials. Commentary and proposed guidelines. Eur. J. Cancer Clin. Oncol. 1987; 23: 1083–1087
  • Graham M. A., Workman P. The impact of pharmacokinetically guided dose escalation strategies in phase I clinical trials: Critical evaluation and recommendations for future studies. Ann Oncol. 1992; 3: 339–347
  • Powis G. Effect of human renal and hepatic disease on the pharmacokinetics of anticancer drugs. Cancer Treat. Rev. 1982; 9: 85–124
  • Donelli M. G., Zucchetti M., Munzone E., Crosignani A. Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur. J. Cancer Clin. Oncol 1996, in press
  • Donelli M. G., Zucchetti M., Munzone E., Gentili D. Pharmacokinetics of anticancer agents in patients with impaird liver function. Eur. J. Cancer 1996
  • Park G. R. Pharmacokinetics and pharmacodynamics in the critically ill patient. Xenobiotica 1993; 23: 1195–1230
  • Colombo T., Gonzalez O., Zucchetti M., Maneo M., Sessa C., Goldrhisch A. Paclitaxel induces significant changes in epidoxorubicin distribution in mice. Ann. Oncol. 1996; 7: 801–805
  • Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 1990; 42: 155–199
  • Croop J. M., Raymond M., Haber D., Devault A., Arceci R. J., Gros P., Housman D. E. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell Biol. 1989; 9: 1346–1350
  • Van P., Valk C. K.H., Broxterman H. J., Scheffer G., Kuiper C. M., Tsuruo T., Lankelma J., Meijer J. L. M., Pinedo H. M., Scheper R. J. Distribution of multi-drug resistance-associated P-glycoprotein in normal and neoplastic human tissues. Ann. Oncol. 1990; 1: 56–64
  • Sugawara I., Kataoka I., Morishita Y., Hamada H., Tsuruo T., Itoyama S., Mori S. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 1988; 48: 1926–1929
  • Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 1989; 58: 137–171
  • Juliano R., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 1976; 455
  • Juranka P. F., Zastawny R. L., Ling V. p-Glycoprotein: Multidrug resistance and a superfamily of membrane-associated trans-port proteins. FASEB J. 1989; 3: 2583–2592
  • Bitonti A. J., Sjoerdsma A., Mc P. P., Kyle D. E., Oduola A. M. J., Rossan R. N., Milhous W. K., Davidson D. E. J. Reversal of chloroquine resistance in malaria parasite plasmodium falciparum by desipramine. Science 1988; 242: 1301–1303
  • Dutt A., Priebe T. S., Teeter L. D., Kuo M. T., Nelson J. A. Postnatal development of organic cation transport and mdr gene expression in mouse kidney. J. Pharmacol. Exp. Then 1992; 261: 1222–1230
  • Dudley A. J., Brown C. D. A. Mediation of cimetidine secretion of P-glycoprotein and a novel H +-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br. J. Pharmacol. 1996; 117: 1139–1144
  • Broxterman H. J., Giaccone G., Lankelma J. Multidrug resistance proteins and other drug transport-related resistance to natural product agents. Curr. Opin. Oncol. 1995; 7: 532–540
  • Tsuruo T. Mechanisms of multidrug resistance and implications for therapy. Jpn. J. Cancer Res. 1988; 79: 285–296
  • Mickisch G. H., Pai L. H., Gottesman M. M., Pastan I. Mono-clonal antibody MRK16 reverses the multidrug resistance of multidrug-resistant transgenic mice. Cancer Res. 1992; 52: 4427–4432
  • Iwahashi T., Okochi E., Ariyoshi K., Watabe H., Amann E., Mori S., Tsuruo T., Ono K. Specific targeting and killing activities of anti-P-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model. Cancer Res. 1993; 53: 5475–5482
  • Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981; 41: 1967–1972
  • Speeg K. V. J., Mc W. L. Uptake of the noncytotoxic transport probe procainamide in the Chinese hamster ovary model of multidrug resistance. Cancer Res. 1992; 52: 3539–3546
  • Karlsson J., S-Kuo M., Ziemniak J., Artursson P. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: Mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol. 1993; 110: 1009–1016
  • Phang J. M., Poore C. M., Lopaczynska J., Yeh G. C. Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Cancer Res. 1993; 53: 5977–5981
  • Chieli E., Romiti N., Cervelli F., Tongiani R. Effects of flavonols on P-glycoprotein activity in cultured rat hepatocytes. Life Sci. 1995; 57: 1741–1751
  • Critchfield J. W., Welsh C. J., Phang J. M., Yeh G. C. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 1994; 48: 1437–1445
  • Scambia G., Ranelletti F. O., Panici P. B., De R., Bonanno G., Ferrandina G., Piantelli M., Bussa S., Rumi C., Cianfriglia M. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 1994; 34: 459–464
  • Versantvoort C. H., Schuurhuis G. J., Pinedo H. M., Eekman C. A., Kuiper C. M., Lankelma J., Broxterman H. J. Genistein modulates the decreased drug accumulation in non-P-glycoprotein mediated multidrug resistant tumour cells. Br. J. Cancer 1993; 68: 939–946
  • Sarkar M. A. Quercetin not only inhibits P-glycoprotein efflux activity but also inhibits CYP3A isozymes [letter]. Cancer Chemother. Pharmacol. 1995; 36: 448–450
  • Wacher V. J., Wu C. Y., Benet L. Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinogen. 1995; 13: 129–34
  • Gaveriaux C., Boesch D., Jachez B., Bollinger P., Payne P., Loor F. SDZ-PSC-833, a non-immunosuppressive cyclosporine analog, is a very potent multidrug-resistance modifier. J. Cell Pharmacol. 1991; 2: 225–220
  • Keller R. P., Alermatt H. J., Nooter K., Poschmann G., Laissue J. A., Bollinger P., Hiestand P. C. SDZ PSC 833, a nonimmunsuppressive cyclosporine: Its potency in overcoming P-glycoprotein-mediated multidrug resistance of murine leukemia. Int. J. Cancer 1992; 50: 593–597
  • Twentyman P. R., Bleehen N. M. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur. J. Cancer 1991; 27: 1639–1642
  • Gonzalez O., Colombo T., De M., Imperatori L., Zucchetti M. Changes in doxorubicin distribution and toxicity in mice pretreated with the cyclosporin analogue SDZ PSC 833. Cancer Chemother. Pharmacol. 1995; 36: 335–340
  • Colombo T., Gonzalez O. Distribution and activity of doxorubicin combined with SDZ PSC 833 in mice and P388 and P388/DOX leukaemia. Br. J. Cancer 1996; 73: 866–871
  • Mickisch G. H., Pastan I., Gottesman M. M. Multidrug resistant transgenic mice as a novel pharmacologic tool. Bioessays 1991; 13: 381–387
  • Pastan I., Willingham M. C., Gottesman M. M. Molecular manipulations of the multidrug transporter: A new role for transgenic mice. FASEB J. 1991; 5: 2523–2528
  • Galski H., Sullivan M., Willingham M. C. Expression of a human multidrug resistance CDNA (MDR1) in the bone marrow of tansgenic mice: Resistance of daunomycin-induced leukopenia. Mol. Cell. Biol. 1989; 9: 4357
  • Schinkel A. H., Smit J. J. M., Wagenaar E. Efficient inactivation of the mouse mdr genes in embryonic stem cells using homologous recombination. Proc. Am. Assoc. Cancer Res. 1992; 33
  • Schinkel A. H., Wagenaar E., Mol C. A., Borst P. Absence of the mdr la P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest. 1995; 96: 1698–1705
  • Uetrecht J. P. The role of leukocyte-generated reactive metabolites in the pathogenesis of idiosyncratic drug reactions. Drug Metab. Rev. 1992; 24: 299–366
  • Boyd E. M., Bereczky G. M. Liver necrosis from paracetamol. Br. J. Pharmacol. 1966; 26: 606–614
  • Davidson D. G., Eastham W. N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 1966; 5512: 497–499
  • Thomson J. S., Prescott L. F. Liver damage and impaired glucose tolerance after paracetamol overdosage. Br. Med. J. 1966; 5512: 506–507
  • Raucy J. L., Lasker J. M., Lieber C. S., Black M. Acetaminophen activation by human liver cytochromes P450IIE 1 and P4501A2. Arch. Biochem. Biophys. 1989; 271: 270–283
  • Hinson J. A., Pohl L. R., Monks T. J., Gillette J. R. Acetaminophen-induced hepatotoxicity. Life Sci. 1981; 29: 107–116
  • Snawder J. E., Roe A. L., Benson R. W., Roberts D. W. Loss of CYP2E1 and CYP1A2 activity as a function of acetaminophen dose: relation to toxicity. Biochem. Biophys. Res. Commun. 1994; 203: 532–539
  • Hinson J. A., Pumford N. R., Roberts D. W. Mechanisms of acetaminophen toxicity: immunochemical detection of drug-protein adducts. Drug Metab. Rev. 1995; 27: 73–92
  • Pumford N. R., Martin B. M., Hinson J. A. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem. Biophys. Res. Commun. 1992; 182: 1348–1355
  • Cook R. J., Lloyd R. S., Wagner C. Isolation and characterization of cDNA clones for rat liver 10-formyltetrahydrofolate dehydrogenase. J. Biol. Chem. 1991; 266: 4965–4973
  • Myers T. G., Dietz E. C., Anderson N. L., Khairallah E. A., Cohen S. D., Nelson S. D. A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3′-hydroxyacetanilide. Chem. Res. Toxicol. 1995; 8: 403–413
  • Tirmenstein M. A., Nelson S. D. Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J. Biol. Chem. 1989; 264: 9814–9819
  • Moore M., Thor H., Moore G., Nelson S., Moldeus P., Orrenius S. The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J. Biol. Chem. 1985; 260: 13035–13040
  • Tsokos J. O., Todd E. L., Mc J. B., Mitchell J. R. ATP-dependent calcium uptake by rat liver plasma membrane vesicles. Effect of alkylating hepatotoxins in vivo. Mol. Pharmacol. 1985; 28: 56–61
  • Boobis A. R., Seddon C. E., Nasseri P., Davies D. S. Evidence for a direct role of intracellular calcium in paracetamol toxicity. Biochem. Pharmacol. 1990; 39: 1277–1281
  • Nicotera P., Rundgren M., Porubek D. J., Cotgreave I., Moldeus P., Orrenius S., Nelson S. D. On the role of Ca2+ in the toxicity of alkylating and oxidizing quinone imines in isolated hepatocytes. Chem. Res. Toxicol. 1989; 2: 46–50
  • Ray S. D., Sorge C. L., Raucy J. L., Corcoran G. B. Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol. 1990; 106: 346–351
  • Shen W., Kamendulis L. M., Ray S. D., Corcoran G. B. Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: Effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol. Appl. Pharmacol. 1992; 112: 32–40
  • Ray S. D., Kamendulis L. M., Gurule M. W., Yorkin R. D., Corcoran G. B. CA2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB, J. 1993; 7: 453–463
  • Alvir J. M., Lieberman J. A. A reevaluation of the clinical characteristics of clozapine-induced agranulocytosis in light of the United States experience [editorial]. J. Clin. Psychopharmacol. 1994; 14: 87–89
  • Maggs J. L., Williams D., Pirmohamed M., Park B. K. The metabolic formation of reactive intermediates from clozapine, a drug associated with agranulocytosis in man. J. Pharmacol. Exp. Ther. 1995; 275: 1463–1475
  • Zimmerman H. J. Update of hepatotoxicity due to classes of drugs in common clinical use: non steroidal drugs, anti-inflammatory drugs, antibiotics, antihypertensives, and cardiac and psychotropic agents. Semin. Liver Dis. 1990; 10: 322–338
  • Dunk A. A., Walt R. P., Jenkins W. J., Sherlock S. S. Diclofenac hepatitis. Br. Med. J. Clin. Res. Ed. 1982; 284: 1605–1606
  • Helfgott S. M., Sandberg J., Zakim D., Nestler J. Diclofenac-associated hepatotoxicity [see comments]. JAMA 1990; 264: 2660–2662
  • Purcell P., Henry D., Melville G. Diclofenac hepatitis. Gut 1991; 32: 1381–1385
  • Breen E. G., Mc J., Cosgrove E., Mc J., Stevens F. M. Fatal hepatitis associated with diclofenac. Gut 1986; 27: 1390–1393
  • Faed E. M. Properties of acyl glucuronides: Implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab. Rev. 1984; 15: 1213–1249
  • Olson J. A., Moon R. C., Anders M. W., Fenselau C., Shane B. Enhancement of biological activity by conjugation reactions. J. Nutr. 1992; 122: 615–624
  • Spahr H., Benet L. Z. Acyl glucuronides revisited: Is the glucuronidation process a toxification as well as a detoxification mechanism?. Drug Metab. Rev. 1992; 24: 5–47
  • Kenna J. G. The molecular basis of halothane-induced hepatitis. Biochem. Soc. Trans. 1991; 19: 191–195
  • Kenna J. G., Martin J. L., Satoh H., Pohl L. R. Factors affecting the expression of trifluoroacetylated liver microsomal protein neoantigens in rats treated with halothane. Drug Metab. Dispos. 1990; 18: 788–793
  • Williams G. M., Iatropoulos M. J., Djordjevic M. V., Kaltenberg O. P. The triphenylethylene drug tamoxifen is a strong liver carcinogen in the rat. Carcinogenesis 1993; 14: 315–317
  • Greaves P., Goonetilleke R., Nunn G., Topham J., Orton T. Two-year carcinogenicity study of tamoxifen in Alderley Park Wistarderived rats. Cancer Res. 1993; 53: 3919–3924
  • Seoud M. A., Johnson J., Weed J. C. J. Gynecologic tumors in tamoxifen-treated women with breast cancer. Obstet. Gynecol. 1993; 82: 165–169
  • Fisher B., Costantino J. P., Redmond C. K., Fisher E. R., Wickerham D. L., Cronin W. M. Endometrial cancer in tamoxifentreated breast cancer patients: Findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14 [Prior annotation incorrect] [see comments]. J. Natl. Cancer Inst. 1994; 86: 527–537
  • Han X., Liehr J. G. Induction of covalent DNA adducts in rodents by tamoxifen. Cancer Res. 1992; 52: 1360–1363
  • White I. N., De F., Davies A., Smith L. L., Crofton C., Venitt S., Hewer A., Phillips D. H. Genotoxic potential of tamoxifen and analogues in female Fischer F344/n rats, DBA/ 2 and C57BL/6 mice and in human MCL-5 cells. Carcinogenesis 1992; 13: 2197–2203
  • Carthew P., Rich K. J., Martin E. A., De F., Lim C. K., Manson M. M., Festing M. F., White I. N., Smith L. L. DNA damage as assessed by 32P-postlabelling in three rat strains exposed to dietary tamoxifen: the relationship between cell proliferation and liver tumour formation. Carcinogenesis 1995; 16: 1299–1304
  • Pathak D. N., Bodell W. J. DNA adduct formation by tamoxifen with rt and human liver microsomal activation systems. Carcinogenesis 1994; 15: 529–532
  • Pathak D. N., Pongracz K., Bodell W. J. Microsomal and peroxidase activation of 4-hydroxy-tamoxifen to form DNA adducts: Comparison with DNA adducts formed in Sprague-Dawley rats treated with tamoxifen. Carcinogenesis 1995; 16: 11–15
  • Phillips D. H., Carmichael P. L., Hewer A., Cole K. J., Hardcastle I. R., Poon G. K., Keogh A., Strain A. J. Activation of tamoxifen and its metabolite alpha-hydroxytamoxifen to DNA-binding products: Comparisons between human, rat and mouse hepatocytes. Carcinogenesis 1996; 17: 89–94
  • Moorthy B., Sriram P., Pathak D. N., Bodell W. J., Randerath K. Tamoxifen metabolic activation: comparison of DNA adducts formed by microsomal and chemical activation of tamoxifen and 4-hydroxytamoxifen with DNA adducts formed in vivo. Cancer Res. 1996; 56: 53–57
  • Phillips D. H., Carmichael P. L., Hewer A., Cole K. J., Poon G. K. Alpha-Hydroxytamoxifen, a metabolite of tamoxifen with exceptionally high DNA-binding activity in rat hepatocytes. Cancer Res. 1994; 54: 5518–5522
  • Randerath K., Moorthy B., Mabon N., Sriram P. Tamoxifen: Evidence by 32P-postlabeling and use of metabolic inhibitors for two distinct pathways leading to mouse hepatic DNA adduct formation and identification of 4-hydroxytamoxifen as a proximate metabolite. Carcinogenesis 1994; 15: 2087–2094
  • Potter G. A., Mc Cague R., Jarman M. A mechanistic hypothesis for DNA adduct formation by tamoxifen following hepatic oxidative metabolism. Carcinogenesis 1994; 15: 439–442
  • Osborne M. R., Hewer A., Hardcastle I. R., Carmichael P. L., Phillips D. H. Identification of the major tamoxifen-deoxyguanosine adduct formed in the liver DNA of rats treated with tamoxifen. Cancer Res. 1996; 56: 66–71
  • Caccia S., Garattini S. Pharmacological implications of drug metabolism. The Physiology of Xenobiotic Metabolism. Wiley, New York 1996, in press
  • Caccia S., Garattini S. Benzodiazepines. Handbook of Experimental Pharmacology, H. H. Frey, D. Janz. Springer Verlag, Berlin 1985; 575–593
  • Wong D. T., Fuller R. W. Serotonergic mechanisms in feeding. Int. J. Obes. 1987; 11(suppl. 3)125–133
  • Anelli M., Bizzi A., Caccia S., Codegoni A. M., Fracasso C., Garattini S. Anoerectic activity of fluoxetine and norfluoxetine in mice, rats and guinea-pigs. J. Pharm. Pharmacol. 1992; 44: 696–698
  • Gobbi M., Frittoli E., Mennini T., Garattini S. Releasing activities of d-fenfluramine and fluoxetine on hippocampal synaptosomes preloaded with (3H)serotonin. Naunyn Schmiedebergs Arch. Pharmacol. 1992; 345: 1–6
  • Borroni E., Ceci A., Garattini S., Mennini T. Differences between d-fenfluramine and d-norfenfluramine in serotonin presynaptic mechanisms. J. Neurochem. 1983; 40: 891–893
  • Mennini T., Gobbi M., Crespi D., Cinquanta M., Frittoli E., Giorcell P., Anelli M., Caccia S. In vivo and in vitro interaction of flunarizine with d-fenfluramine serotonergic effects. Pharmacol. Biochem. Behav. 1996; 53: 155
  • Gibson E. L., Kennedy A. J., Curzon G. Fenfluramine- and d-norfenfluramine-induced hypophagia: differential mechanisms and involvement of postsynaptic 5-HT receptors. Eur. J. Pharmacol. 1993; 242: 83–90
  • Conn P. J., Sanders E. Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked serotonergic (5-HT-2 and 5-HT-lc) receptors. J. Pharmacol. Exp. Pier. 1987; 242: 552–557
  • Samanin R., Mennini T., Ferraris A., Bendotti C., Borsini F., Garattini S. m-Chlorophenylpiperazine: A central serotonin agonist causing powerful anorexia in rats. Naunyn Schmiedebergs Arch. Pharmacol. 1979; 308: 159–163
  • Bianchi G., Caccia S. Simultaneous determination of buspirone, gepirone, ipsapirone and their common metabolite 1-(2-pyrimidinyl)-piperazine in rat plasma and brain by high-performance liquid chromatography. J. Chromatogr. 1988; 431: 477–480
  • Gobbi M., Frittoli E., Mennini T. Antagonist properties of 1-(2-pyrimidinyl)piperazine at presynaptic alpha2-adrenoceptors in the rat brain. Eur. J. Pharmacol. 1990; 180: 183–186
  • Raiteri M., Maura G., Versace P. nctional evidence for two stereochemically different alpha-2 adrenoceptors regulating central norepinephrine and serotonin release. Pharmacol. Exp. Ther. 1983; 224: 679–684
  • Bianchi G., Caccia S., Della F., Garattini S. The alpha 2-adrenoceptor antagonist activity of ipsapirone and gepirone is mediated by their common metabolite 1-(2-pyrimidinyl)-piperazine (PmP). Eur. J. Pharmacol. 1988; 151: 365–371
  • Bonanno P., Fassio A., Severi P., Ruelle A., Raiteri M. Fenfluramine releases serotonin from human brain nerve endings by a dual mechanism. J. Neurochem. 1994; 63: 1163–1166

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.