42
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Strategies to Characterize the Mechanisms of Action and the Active Sites of Glutathione S-Transferases: A Review

, , &
Pages 569-643 | Published online: 22 Sep 2008

References

  • Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 1992; 17: 463–468
  • Commandeur J. N. M., Stijntjes G. J., Vermeulen N. P. E. Enzymes and transport systems involved in the formation and disposition of glutathione S-conjugates. Pharmacol. Rev. 1995; 47: 271–330
  • Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jornvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc. Natl. Acad. Sci. USA 1985; 82: 7202–7206
  • Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 1991; 274: 409–414
  • Buetler T. M., Eaton D. L. Glutathione S-transferases: amino acid sequence comparison, classification and phylogenetic relationship. Environ. Carcinogen. Ecotoxicol. Rev. 1992; C10: 181–203
  • De Jong J. L., Morgenstern R., Jornvall H., De Pierre J. W., Tu C. -P. D. Gene expression of rat and human microsomal glutathione S-transferases. J. Biol. Chem. 1988; 263: 8430–8436
  • Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST* and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Molec. Biol. 1995; 30: 445–600
  • Litwack G., Ketterer B., Arias I. M. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of organic anions. Nature 1971; 234: 466–467
  • Bhargava M. M., Listowsky I., Arias I. M. Ligandin: bilirubin binding and glutathione S-transferase activity are independent processes. J. Biol. Chem. 1978; 253: 4112–4115
  • Jernström B., Babson J. R., Moldéus P., Homgren A., Reed D. J. Glutathione conjugation and DNA-binding of ()-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene and ()-7β,8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in isolated rat hepatocytes. Carcinogenesis 1982; 3: 861–866
  • Raney K. D., Meyer D. J., Ketterer B., Harris T. M., Guengerich F. P. Glutathione conjugation of aflatoxin B1exo- and endo-epoxides by rat and human glutathione S-transferases. Chem. Res. Toxicol. 1992; 5: 470–478
  • Te Koppele J. M., Coles B., Ketterer B., Mulder G. J. Stereoselectivity of rat liver glutathione transferase isoenzymes for α-bromoisovaleric acid and α-bromoisovalerylurea enantiomers. Biochem. J. 1988; 252: 137–142
  • Mulders T. M. T., Van Ommen B., Van Bladeren P. J., Breimer D. D., Mulder G. J. Stereoselectivity of human liver and intestinal cytosolic fractions as well as purified human glutathione S-transferase isoenzymes towards 2-bromoisovalerylurea enantiomers. Biochem. Pharmacol. 1993; 46: 1775–1780
  • Booth J., Boyland E., Sims P. An enzyme from rat liver catalyzing conjugation with glutathione. Biochem. J. 1961; 79: 516–524
  • Lundblad R. L. Techniques in Protein Modification. CRC Press, London 1995
  • Carne T., Tipping E., Ketterer B. The binding and catalytic activities of forms of ligandin after modification of its thiol groups. Biochem. J. 1979; 177: 433–439
  • Van B., Ommen J., Ploemen H. T. M., Ruven H. J., Vos R. M. E., Bogaards J. J. P., Van Berkel W. J. H., Van Bladeren P. J. Studies on the active site of rat glutathione S-transferase isoenzyme 4–4. Chemical modification by tetrachloro-1,4-benzoquinone and its glutathione conjugate. Eur. J. Biochem. 1989; 181: 423–429
  • Mc Carthy R. M., Sheehan D. Cysteine plays a role in catalysis in glutathione S-transferase 1–1. Biochem. Soc. Trans. 1995; 23: 388S
  • Ploemen J. H. T. M., Van Ommen B., Van Bladeren P. J. Irreversible inhibition of human glutathione S-transferase isoenzymes by tetrachloro-1,4-benzoquinone and its glutathione conjugate. Biochem. Pharmacol. 1996; 41: 1665–1669
  • Tamai K., Satoh K., Tsuchida S., Hatayama I., Maki T., Sato K. Specific inactivation of glutathione S-transferases in class pi by SH-modifiers. Biochem. Biophys. Res. Commun. 1990; 167: 331–338
  • Del Boccio G., Pennelli A., Whitehead E. P., Lo Bello M., Petruzzelli R., Federici G., Ricci G. Interaction of glutathione transferase from horse erythrocytes with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. J. Biol. Chem. 1991; 266: 13777–13782
  • J-Hsieh C., Huang S-C., Chen W-L., Lai Y-C., Tam M. F. Cysteine-86 is not needed for the enzymic activity of glutathione S-transferase 3–3. Biochem. J. 1991; 278: 293–297
  • Chang L-H., Wang L-Y., Tam M. F. The single cysteine residue on an alpha family chick liver glutathione S-transferase CL 3–3 is not functionally important. Biochem. Biophys. Res. Commun. 1991; 180: 323–328
  • Phillips M. F., Mantle T. J. Inactivation of mouse liver glutathione S-transferase YfYf (Pi class) by ethacrynic acid and 5,5α-dithiobis-(2-nitrobenzoic acid). Biochem. J. 1993; 294: 57–62
  • Ploemen J. H. T. M., Van Schanke A., Van Ommen B., Van Bladeren P. J. Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1–1. Cancer Res. 1994; 54: 915–919
  • Wang R. W., Newton D. J., Pickett C. B., Lu A. Y. H. Site-directed mutagenesis of glutathione S-transferase YaYa: functional studies of histidine, cysteine and trypthophane mutants. Arch. Biochem. Biophys. 1992; 297: 86–91
  • Widersten M., Holmström E., Mannervik B. Cysteine residues are not essential for the catalytic activity of human class mu glutathione transferase M la-la. FEBS Lett. 1991; 293: 156–159
  • Kong K.-H., Inoue H., Takahashi K. Non-essentiality of cysteine and histidine residues for the activity of human class pi glutathione S-transferase. Biochem. Biophys. Res. Commun. 1991; 181: 748–755
  • Nishihira J., Ishibashi T., Sakai M., Nishi S., Kumazaki T., Hatanaka Y., Tsuda S., Hikichi K. Characterization of cysteine residues of glutathione S-transferase P: evidence for steric hindrance of substrate binding by a bulky adduct to cysteine 47. Biochem. Biophys. Res. Commun. 1992; 188: 424–432
  • Rose M. S., Lock E. A. The interaction of triethyltin with a component of guinea-pig liver supernatant. Evidence for histidine in the binding sites. Biochem. J. 1970; 120: 151–157
  • Awasthi Y. C., Bhatnagar A., Singh S. V. Evidence for the involvement of histidine at the active site of glutathione S-transferase PS from human liver. Biochem. Biophys. Res. Commun. 1987; 143: 965–970
  • Zhang P., Graminski G. F., Armstrong R. N. Are the histidine residues of glutathione S-transferase important in catalysis? An assessment by 13C NMR spectroscopy and site-specific mutagenesis. J. Biol. Chem. 1991; 266: 19475–19479
  • Chang L. H., Tam M. F. Site-directed mutagenesis and chemical modification of histidine residues on an α-class chick liver glutathione S-transferase CL 3–3. Eur. J. Biochem. 1993; 211: 805–811
  • Walker J., Crowley P., Barrett J. Chemical modification of a cloned glutathione S-transferase from Schistosoma japonicum: evidence for an essential histidine residue. Exp. Parasitol. 1995; 80: 616–623
  • Lo Bello M., Petruzzelli R., Reale L., Ricci G., Barra D., Federici G. Chemical modification of human placental glutathione transferase by pyridoxal 5α-phosphate. Biochim. Biophys. Acta 1992; 1121: 167–172
  • Reinemer P., Dirr H. W., Ladenstein R., Huber R., Lo Bello M., Federici G., Parker M. W. Three-dimensional structure of class glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 Å resolution. J. Molec. Biol. 1992; 227: 214–226
  • Xia C., Meyer D. J., Chen H., Reinemer P., Huber R., Ketterer B. Chemical modification of GSH transferase P1–1 confirms the presence of Arg-13, Lys-44 and one carboxylate group in the GSH-binding domain of the active site. Biochem. J. 1993; 293: 357–362
  • Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class glutathione S-transferase in complex with glutathione sulfonate at 2.3 Å resolution. EMBO J. 1991; 10: 1997–2005
  • Dirr H. W., Reinemer P., Huber R. Refined crystal structure of porcine, class glutathione S-transferase (pGST P1–1) at 2.1 Å resolution. J. Molec. Biol. 1994; 243: 72–92
  • Widersten M., Kolm R. H., Björnestedt R., Mannervik B. Contribution of five amino acid residues in the glutathione binding site to the function of glutathione transferase P1–1. Biochem. J. 1992; 285: 377–381
  • Manoharan T. W., Gulick A. M., Reinemer P., Dirr H. W., Huber R., Fahl W. W. Mutational substitution of residues implicated by crystal structure in binding the substrate glutathione to human glutathione S-transferase pi. J. Molec. Biol. 1992; 226: 319–322
  • Schasteen C. S., Krivak B. M., Reed D. J. Similarities in inactivation of glutathione S-transferases by arginine specific chemical modifying agents. Fed. Proc. 1983; 42: 2036
  • Chen P.-S., Wang T.-C., Chang G.-G. Chemical modification of glutathione S-transferase from C6/36, an Aedes albopictus cell line. Insect Biochem. Molec. Biol. 1995; 25: 613–619
  • Kong K.-H., Nishida M., Inoue H., Takahashi K. Tyrosine-7 is an essential residue for the catalytic activity of human class pi glutathione S-transferase: chemical modification and site-directed mutagenesis studies. Biochem. Biophys. Res. Commun. 1992; 182: 1122–1129
  • Meyer D. J., Xia C., Coles B., Chen H., Reinemer P., Huber R., Ketterer B. Unusual reactivity of Tyr-7 of GSH transferase P1–1. Biochem. J. 1993; 293: 351–356
  • Kolm R. H., Sroga G. E., Mannervik B. Participation of the phenolic hydroxyl group of Tyr-8 in the catalytic mechanism of human glutathione transferase P1–1. Biochem. J. 1992; 285: 537–540
  • Liu S., Zhang P., Ji X., Johnson W. W., Gilliland G. L., Armstrong R. N. Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3–3 of glutathione S-transferase. J. Biol. Chem. 1992; 267: 4296–4299
  • Nishihira J., Sakai M., Nishi S. Identification of ionizable groups essential for the enzyme catalysis on glutathione S-transferase P. Biochem. Biophys. Res. Commun. 1993; 194: 1466–1474
  • Nishihira J., Ishibashi T., Sakai M., Nishi S., Kumazaki T. Evidence for the involvement of tryptophane 38 in the active site of glutathione S-transferase P. Biochem. Biophys. Res. Commun. 1992; 185: 1069–1077
  • Van Ommen B., Den Besten C., Rutten A. L. M., Ploemen J. H. T. M., Vos R. M. E., Muller F., Van Bladeren P. J. Active site-directed irreversible inhibition of glutathione S-transferases by the glutathione conjugate of tetrachloro-1,4-benzoquinone. J. Biol. Chem. 1988; 263: 12939–12942
  • Ploemen J. H. T. M., Johnson W. W., Jespersen S., Vanderwall D., Van Ommen B., Van der Greef J., Van Bladeren P. J., Armstrong R. N. Active-site tyrosyl residues are targets in the irreversible inhibition of a class mu glutathione transferase by 2-(S-glutathionyl)-3,5,6-trichloro-1,4-benzoquinone. J. Biol. Chem. 1994; 269: 26890–26897
  • Hong J.-L., Liu L.-F., Wang L.-Y., Tsai S.-P., Hsieh C.-H., Hsiao C.-D., Tam M. F. Modification of glutathione S-transferase 3–3 mutants with 2-(S-glutathionyl)-3,5,6-trichloro-1,4-benzoquinone. Identification of the C-terminal tryptic fragments as part of the H-site and evidence that 2-(S-glutathionyl)-3,5,6-trichloro-1,4-benzoquinone is not specific for cysteine labelling. Biochem. J. 1994; 304: 825–831
  • Katusz R. M., Colman R. F. S-(4-Bromo-2,3-dioxobutyl)glutathione: a new affinity label for the 4–4 isoenzyme of rat liver glutathione S-transferase. Biochemistry 1991; 30: 11230–11238
  • Johnson W. W., Liu S., Ji X., Gilliland G. L., Armstrong R. N. Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione S-transferase. J. Biol. Chem. 1993; 268: 11508–11511
  • Pennington C. J., Rule G. S. Mapping the substrate-binding site of a human class mu glutathione transferase using nuclear magnetic resonance spectroscopy. Biochemistry 1992; 31: 2912–2920
  • Katusz R. M., Bono B., Colman R. F. Identification of Tyr115 labeled by S-(4-bromo-2,3-dioxobutyl)glutathione in the hydrophobic substrate binding site of glutathione S-transferase, isoenzyme 3–3. Arch. Biochem. Biophys. 1992; 298: 667–677
  • Katusz R. M., Bono B., Colman R. F. Affinity labeling of Cys111 of glutathione S-transferase, isoenzyme 1–1, by S-(4-bromo-2,3-dioxobutyl)-glutathione. Biochemistry 1992; 31: 8984–8990
  • Barycki J. J., Colman R. F. Affinity labeling of glutathione S-transferase, isozyme 4–4, by 4-(fluorosulfonyl)benzoic acid reveals Tyr115 to be an important determinant of xenobiotic substrate specificity. Biochemistry 1993; 32: 13002–13011
  • Wang J., Barycki J. J., Colman R. F. Tyrosine 8 contributes to catalysis but is not required for activity of rat liver glutathione S-transferase, 1–1. Protein Sci. 1996; 5: 1032–1042
  • Hu L., Colman R. F. Monobromobimane as an affinity label of the xenobiotic binding site of rat glutathione S-transferase 3–3. J. Biol. Chem. 1995; 270: 21875–21883
  • Vander Jagt D. L., Hunsaker L. A., Garcia K. B., Royer R. E. Isolation and characterization of the multiple glutathione S-transferases from human liver. Evidence for unique heme-binding sites. J. Biol. Chem. 1985; 260: 11603–11610
  • Liu L.-F., Hong J.-L., Tsai S.-P., Hsieh J.-C., Tam M. F. Reversible modification of rat liver glutathione S-transferase 3–3 with 1-chloro-2,4-dinitrobenzene: specific labelling of Tyr-115. Biochem. J. 1993; 296: 189–197
  • Van der Aar E. M., Tan K. T., Commandeur J. N. M., Vermeulen N. P. E. Affinity parameters of 2-substituted 1-chloro-4-nitrobenzenes for the active site of rat glutathione S-transferase 4–4, unpublished
  • Hammes G. G. Enzyme Catalysis and Regulation, B. Horecker, N. O. Kaplan, J. Marmur, H. A. Scheraga. Academic Press, New York 1982
  • Glazer A. N. The chemical modification of proteins by group-specific and site-specific reagents. The Proteins, H. Neurath, R. L. Hill. Academic Press, New York 1976; 2–103
  • Seddon A. P., Bunni M., Douglas K. T. Photoaffinity labelling by S-(p-azidophenacyl)glutathione of glyoxalase II and glutathione S-transferase. Biochem. Biophys. Res. Commun. 1980; 95: 446–452
  • Hoesch R. M., Boyer T. D. Localization of a portion of the active site of two rat liver glutathione S-transferases using a photoaffinity label. J. Biol. Chem. 1989; 264: 17712–17717
  • Cooke R., Björnestedt R., Douglas K. T., Mc Kie J. H., King M. D., Coles B., Ketterer B., Mannervik B. Photoaffinity labelling of the active site of the rat glutathione transferases 3–3 and 1–1 and human glutathione transferase Al-1. Biochem. J. 1994; 302: 383–390
  • Ji X., Armstrong R. N., Gilliland G. L. Snapshots along the reaction coordinate of an SNAr reaction catalyzed by glutathione transferase. Biochemistry 1993; 32: 12949–12954
  • Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G., Olin B., Mannervik B., Jones T. A. Structure determination and refinement of human alpha class glutathione transferase A1–1, and a comparison with the mu and pi class enzymes. J. Molec. Biol. 1993; 232: 192–212
  • Nishihira J., Sakai M., Nishi S., Hatanaka Y. Identification of the electrophilic substrate-binding site of glutathione S-transferase P by photo-affinity labeling. Eur. J. Biochem. 1995; 232: 106–110
  • García-Sá I., Aez Párraga A., Phillips M. F., Mantle T. J., Coll M. Molecular structure at 1.8 Å of mouse liver class pi glutathione S-transferase complexed with S-(p-nitrobenzyl)glutathione and other inhibitors. J. Molec. Biol. 1994; 237: 298–314
  • Whalen R., Kempner E. S., Boyer T. D. Structural studies of a human pi class glutathione S-transferase. Photoaffinity labeling of the active site and target size analysis. Biochem. Pharmacol. 1996; 52: 281–288
  • Chen W.-L., Hsieh J.-C., Hong J.-L., Tsai S.-P., Tam M. F. Site-directed mutagenesis and chemical modification of cysteine residues of rat glutathione S-transferase 3–3. Biochem. J. 1992; 286: 205–210
  • Tamai K., Shen W., Tsuchida S., Hatayama I., Satoh K., Yasui A., Oikawa A., Sato K. Role of cysteine residues in the activity of rat glutathione transferase P (7–7). Biochem. Biophys. Res. Commit. 1991; 179: 790–797
  • Ricci G., Lo Bello M., Caccuri A. M., Pastore A., Nuccetelli M., Parker M. W., Federici G. Site-directed mutagenesis of human glutathione transferase P1–1. Mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1–1. J. Biol. Chem. 1995; 270: 1243–1248
  • Vander Jagt D. L., Wilson S. P., Heidrich J. E. Purification and bilirubin binding properties of glutathione S-transferase from human placenta. FEBS Lett. 1981; 136: 319–321
  • Lo Bello M., Pastore A., Petruzzelli R., Parker M. W., Wilce M. C. J., Federici G., Ricci G. Conformational states of human placental glutathione transferase as probed by limited proteolysis. Biochem. Biophys. Res. Commun. 1993; 194: 804–810
  • Lo Bello M., Battistoni A., Mazzetti A. P., Board P. G., Muramatsu M., Federici G., Ricci G. Site-directed mutagenesis of human glutathione transferase P1–1. Spectral, kinetic and structural properties of Cys-47 and Lys-54 mutants. J. Biol. Chem. 1995; 270: 1249–1253
  • Wang R. W., Newton D. J., Pickett C. B., Lu A. Y. H. Site-directed mutagenesis of glutathione S-transferase YaYa: nonessential role of histidine in catalysis. Arch. Biochem. Biophys. 1991; 286: 574–578
  • Widersten M., Mannervik B. A structural role of histidine 15 in human glutathione transferase M1–1, an amino acid residue conserved in class Mu enzymes. Protein Eng. 1992; 5: 551–557
  • Stenberg G., Board P. G., Carlberg I., Mannervik B. Effects of directed mutagenesis on conserved arginine residues in a human class alpha glutathione transferase. Biochem. J. 1991; 274: 549–555
  • Wang R. W., Newton D. J., Johnson A. R., Pickett C. B., Lu A. Y. H. Site-directed mutagenesis of glutathione S-transferase YaYa: mapping the glutathione binding site. J. Biol. Chem. 1993; 268: 23981–23985
  • Bjömestedt R., Stenberg G., Widersten M., Board P. G., Sinning I., Jones T. A., Mannervik B. Functional significance of arginine 15 in the active site of human class alpha glutathione transferase A1–1. J. Molec. Biol. 1995; 247: 765–773
  • Kong K.-H., Inoue H., Takahashi K. Site-directed mutagenesis of amino acid residues involved in the glutathione binding of human glutathione S-transferase P1–1. J. Biochem. 1992; 112: 725–728
  • Manoharan T. H., Gulick A. M., Puchalski R. B., Servais A. L., Fahl W. E. Structural studies on human glutathione S-transferase. Substitution mutations to determine amino acids necessary for binding glutathione. J. Biol. Chem. 1992; 267: 18940–18945
  • Stenberg G., Board P. G., Mannervik M. Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class alpha glutathione transferase. FEBS Lett. 1991; 293: 153–155
  • Wang R. W., Newton D. J., Huskey S.-E. W., Mc Keever B. M., Pickett C. B., Lu A. Y. H. Site-directed mutagenesis of glutathione S-transferase YaYa. Important roles of tyrosine 9 and aspartic acid 101 in catalysis. J. Biol. Chem. 1992; 267: 19866–19871
  • Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. H. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat α1–1 GST. J. Biol. Chem. 1993; 268: 19188–19191
  • Dietze E. C., Wang R. W., Lu A. Y. H., Atkins W. M. Ligand effects on the fluorescence properties of tyrosine-9 in alpha 1–1 glutathione S-transferase. Biochemistry 1996; 35: 6745–6753
  • Xiao G., Liu S., Ji X., Johnson W. W., Chen J., Parsons J. F., Stevens W. J., Gilliland G. L., Armstrong R. N. First-sphere and second-sphere electrostatic effects in the active site of a class mu glutathione transferase. Biochemistry 1996; 35: 4753–4765
  • Liu S., Ji X., Gilliland G. L., Stevens W. J., Armstrong R. N. Second-sphere electrostatic effects in the active site of glutathione S-transferase. Observation of an on-face hydrogen bond between the side chain of threonine 13 and the α-cloud of tyrosine 6 and its influence on catalysis. J. Am. Chem. Soc. 1993; 115: 7910–7911
  • Kong K.-H., Takasu K., Inoue H., Takahashi K. Tyrosine-7 in human class pi glutathione S-transferase is important for lowering the pKa of the thiol group of glutathione in the enzyme-glutathione complex. Biochem. Biophys. Res. Commun. 1992; 184: 194–197
  • Karshikoff A., Reinemer P., Huber R., Ladenstein R. Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in α-class glutathione transferases. Eur. J. Biochem. 1993; 215: 663–670
  • Parsons J. F., Armstrong R. N. Proton configuration in the ground state and transition state of a glutathione transferase-catalyzed reaction inferred from the properties of tetradeca(3-fluorotyrosyl)glutathione transferase. J. Am. Chem. Soc. 1996; 118: 2295–2296
  • Nishida M., Kong K.-H., Inoue H., Takahashi K. Molecular cloning and site-directed mutagenesis of glutathione S-transferase from Escherichia coli. J. Biol. Chem. 1994; 269: 32536–32541
  • Wilce M. C. J., Board P. G., Feil S. C., Parker M. W. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995; 14: 2133–2143
  • Board P. G., Coggan M., Wilce M. C. J., Parker M. W. Evidence for an essential serine residue in the active site of the theta class glutathione tranferases. Biochem. J. 1995; 311: 247–250
  • Chaga G., Widersten M., Andersson L., Porath J., Danielson U. H., Mannervik B. Engineering of a metal coordinating site into human glutathione transferase M1–1 based on immobilized metal ion affinity chromatography of homologous rat enzymes. Protein Eng. 1994; 7: 1115–1119
  • Yilmaz S., Widersten M., Emahazion T., Mannervik B. Generation of a Ni(II) binding site by introduction of a histidine cluster in the structure of human glutathione transferase A1–1. Protein Eng. 1995; 8: 1163–1169
  • Zhang P., Armstrong R. N. Construction, expression, and preliminary characterization of chimeric class glutathione S-transferases with altered catalytic properties. Biopolymers 1990; 29: 159–169
  • Zhang P., Liu S., Shan S., Ji X., Gilliland G. L., Armstrong R. N. Modular mutagenesis of exons 1, 2, and 8 of a glutathione S-transferase from the mu class. Mechanistic and structural consequences for chimeras of isoenzyme 3–3. Biochemistry 1992; 31: 10185–10193
  • Ji X., Zhang P., Armstrong R. N., Gilliland G. L. The three-dimensional structure of a glutathione S-transferase from the mu gene class. Structural analysis of the binary complex of isoenzyme 3–3 and glutathione at 2.2 Å resolution. Biochemistry 1992; 31: 10169–10184
  • Shan S., Armstrong R. N. Rational construction of the active site of a class mu glutathione S-transferase. J. Biol. Chem. 1994; 269: 32373–32379
  • Björnestedt R., Widersten M., Board P. G., Mannervik B. Design of two chimaeric human-rat class alpha glutathione transferases for probing the contribσ-complex intermediates in nucleophilic aromatic substitution reactions. Biochemistry 1989; 28: 6252–6258
  • Lo Bello M., Parker M. W., Desideri A., Polticelli F., Falconi M., De Bocciol G., Pennelli A., Federici G., Ricci G. Peculiar spectroscopic and kinetic properties of Cys-47 in human placental glutathione transferase. Evidence for an atypical thiolate ion pair near the active site. J. Biol. Chem. 1993; 268: 19033–19038
  • Wang R. W., Bird A. W., Newton D. J., Lu A. Y. H., Atkins W. M. Fluorescence characterization of Trp 21 in rat glutathione S-transferase 1–1: microconformational changes induced by S-hexyl glutathione. Protein Sci. 1993; 2: 2085–2094
  • Schramm V. L., Mc Cluskey R., Emig F. A., Litwack G. Kinetic studies and active site-binding properties of glutathione S-transferase using spin-labeled glutathione, a product analogue. J. Biol. Chem. 1984; 259: 714–722
  • Caccuri A. M., Polizio F., Piemonte F., Tagliatesta P., Federici G., Desideri A. Investigation of the active site of human placenta glutathione transferase by means of a spin-labelled glutathione analogue. Biochim. Biophys. Acta 1992; 1122: 265–268
  • Desideri A., Caccuri A. M., Polizio F., Bastoni R., Federici G. Electron paramagnetic resonance identification of a highly reactive thiol group in the proximity of the catalytic site of human placenta glutathione transferase. J. Biol. Chem. 1991; 266: 2063–2066
  • Penington C. J., Rule G. S. Application of site-directed mutagenesis in nuclear magnetic resonance spectroscopy. Biophys. J. 1992; 62: 116–118
  • Sesay M. A., Ammon H. L., Armstrong R. N. Crystallization and a preliminary X-ray diffraction study of isozyme 3–3 of glutathione S-transferase from rat liver. J. Mol. Biol. 1987; 197: 377–378
  • Cowan S. W., Bergfors T., Jones T. A., Tibbeling G., Olin B., Board P. G., Mannervik B. Crystallization of GST2, a human class alpha glutathione transferase. J. Molec. Biol. 1989; 208: 369–370
  • Fu J.-H., Rose J., Chung Y.-J., Tam M. F., Wang B. C. Crystals of isoenzyme 3–3 of rat liver glutathione S-transferase with and without inhibitor. Acta Crystallogr. 1991; B47: 813–814
  • Schaeffer J., Gallay O., Ladenstein R. Glutathione transferase from bovine placenta. Preparation, biochemical characterization, crystallization and preliminary crystallographic analysis of a neutral class enzyme. J. Biol. Chem. 1988; 263: 17405–17411
  • Parker M. W., Lo Bello M., Federici G. Crystallization of glutathione S-transferase from human placenta. J. Molec. Biol. 1990; 213: 221–222
  • Ji X., Von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry 1995; 34: 5317–5328
  • Din H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur. J. Biochem. 1994; 220: 645–661
  • De Groot M. J., Vermeulen N. P. E. Modeling the active sites of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes. Drug Met. Rev. 1997; 29(3)747–799
  • Cameron A. D., Sinning I., L'Hermite G., Olin B., Board P. G., Mannervik B., Jones T. A. Structural analysis of human alpha-class glutathione transferase A1–1 in the apo-form and in complex with ethacrynic acid and its glutathione conjugate. Structure 1995; 3: 717–727
  • Zeng K., Rose J. P., Chen H.-C., Strickland C. L., Tu C.-P. D., Wang B.-C. A surface mutant (G82R) of a human α-glutathione S-transferase shows decreased thermal stability and a new mode of molecular association in the crystal. Protein-Struct. Funct. Genet. 1994; 20: 259–263
  • Lin S.-C., Yu H.-H., Liu L.-F., Lee J.-Y., Huang A., Tam M. F., Liaw Y.-C. Crystallization and preliminary X-ray analysis of chicken-liver glutathione S-transferase CL 3–3. Acta Crystallogr. 1996; D52: 601–603
  • Ji X., Johnson W. W., Sesay M. A., Dickert L., Prasad S. M., Ammon H. L., Armstrong R. N., Gilliland G. L. Structure and function of the xenobiotic substrate binding site of a glutathione S-transferase as revealed by X-ray crystallographic analysis of product complexes with the diastereomers of 9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene. Biochemistry 1994; 33: 1043–1052
  • Fu J.-H., Rose J. New crystal forms of a α-class glutathione S-transferase from rat liver. Acta Crystallogr. 1994; D50: 219–224
  • Raghunathan S., Chandross R. J., Kretsinger R. H., Allison T. J., Penington C. J., Rule G. S. Crystal structure of human class mu glutathione transferase GSTM2–2, Effects of lattice packing on conformational heterogeneity. J. Molec. Biol. 1994; 238: 815–832
  • Lim K., Ho J. X., Keeling K., Gilliland G. L., Ji X., Rüker F., Carter D. C. Three-dimensional structure of Schistoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. Protein Sci. 1994; 3: 2233–2244
  • Mc Tigue M. A., Williams D. R., Tainer J. A. Crystal structures of a Schistosomal drug and vaccine target: glutathione S-transferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J. Molec. Biol. 1995; 246: 21–27
  • Mc Tigue M. A., Bernstein S. L., Williams D. R., Tainer J. A. Purification and crystallization of a Schistosomal glutathione S-transferase. Protein-Struct. Funct. Genet. 1995; 22: 55–57
  • Wilce M. C. J., Feil S. C., Board P. G., Parker M. W. Crystallization and preliminary X-ray diffraction studies of a glutathione S-transferase from the Australian sheep blowfly. Lucilia cuprina, J. Molec. Biol. 1994; 236: 1407–1409
  • Reinemer P., Prade L., Hof P., Neuefeind T., Huber R., Zettl R., Palme K., Schell J., Koelln I., Bartunik H. D., Bieseler B. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J. Molec. Biol. 1996; 255: 289–309
  • Feil S. C., Wilce M. W., Rossjohn J., Allocati N., Aceto A., Di Ilio C., Parker M. W. Crystallization and preliminary X-ray analysis of a bacterial glutathione transferase. Acta Crystallogr. 1996; D52: 189–191
  • Mannervik B., Awasthi Y. C., Board P. G., Hayes J. D., Di Ilio C., Ketterer B., Listowsky I., Morgenstern R., Muramatsu M., Pearson W. R., Pickett C. B., Sam K., Widersten M., Wolf C. R. Nomenclature for human glutathione transferases. Biochem. J. 1992; 282: 305–306
  • Ploemen J. H. T. M., Wormhoudt L. W., Haenen G. R. M. M., Oudshoorn M. J., Commandeur J. N. M., Vermeulen N. P. E., de Waziers I., Beaune P. H., Watabe T., Van Bladeren P. J. The use of human in vitro metabolic parameters to explore the risk assessment of hazardous compounds: the case of ethylenedibromide. Toxicol. Appl. Pharmacol. 1997; 143: 56–69
  • Cobb D., Boehlert C., Lewis D., Armstrong R. N. Stereoselectivity of isoenzyme C of glutathione S-transferase toward arene and azaarene oxides. Biochemistry 1983; 22: 805–812
  • Dostal L. A., Aitio A., Harris C., Bhatia A. V., Hernandez O., Bend J. R. Cytosolic glutathione S-transferases in various rat tissues differ in stereoselectivity with polycyclic arene and alkene oxide substrates. Drug Metab. Disp. 1986; 14: 303–309
  • De Groot M. J., Van der Aar E. M., Nieuwenhuizen P. J., Van der Plas R. M., Donné-Op den Kelder G. M., Commandeur J. N. M., Vermeulen N. P. E. A predictive substrate model for rat glutathione S-transferase 4–4. Chem. Res. Toxicol. 1995; 8: 649–658
  • Robertson I. G. C., Jensson H., Mannervik B., Jernström B. Glutathione transferases in rat lung: the presence of transferase 7–7, highly efficient in the conjugation of glutathione with the carcinogenic (+)-7β,8α-dihydroxy-9α,10α-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Carcinogenesis 1986; 7: 295–299
  • Robertson I. G. C., Jernström B. The enzymatic conjugation of glutathione with bay-region diol-epoxides of benzo[a]pyrene, benzo[a]anthracene and chrysene. Carcinogenesis 1986; 7: 1633–1636
  • De Groot M. J., Vermeulen N. P. E., Mullenders D. L. J., Donné-Op den Kelder G. M. A homology model for rat mu class glutathione S-transferase 4–4. Chem. Res. Toxicol 1996; 9: 28–40
  • Kauvar L. M. GST-targeted drug candidates. Glutathione S-transferases. Structure, Function and Clinical Applications, N. P. E. Vermeulen, G. J. Mulder, H. Nieuwenhuyse, W. H. M. Peters, P. J. van Bladeren. Taylor & Francis, London 1996; 187–197
  • Caccuri A. M., Ascenzi P., Antonini G., Parker M. W., Oakley A. J., Chiessi E., Nuccetelli M., Battistoni A., Bellizia A., Ricci G. Structural flexibility modulates the activity of human glutathione transferase P1–1. Influence of a poor cosubstrate on dynamics and kinetics of human glutathione transferase. J. Biol. Chem. 1996; 271: 16193–16198
  • Cachau R. E., Erickson J. W., Villar H. O. Novel procedure for structure refinement in homology modeling and its application to the human class mu glutathione S-transferases. Protein Eng. 1994; 7: 831–839
  • Hsiao C.-D., Martsen E. O., Lee J.-Y., Tam M. F. Amino acid sequencing, molecular cloning and modelling of the chick liver class-Theta glutathione S-transferase CLI. Biochem. J. 1995; 312: 91–98
  • Barry T. R., Waters P., Doonan S., Sheehan D. Structural investigation of a glutathione binding site using computational analysis. Biochem. Soc. Trans. 1995; 23: 382S
  • Aceto A., Sacchetta P., Bucciarelli T., Dragani B., Angelucci S., Radatti G. L., Di Ilio C. Structural and functional properties of the 34-kDa fragment produced by the N-terminal chymotryptic cleavage of glutathione transferase P1–1. Arch. Biochem. Biophys. 1995; 316: 873–878
  • Askelöf P., Guthenberg C., Jakobson I., Mannervik B. Purification and characterization of two glutathione S-aryltransferase activities from rat liver. Biochem. J. 1975; 147: 513
  • Danielson U. H., Esterbauer H., Mannervik B. Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases. Biochem. J. 1987; 247: 707–713
  • Kolm R. H., Danielson U. H., Zhang Y., Talalay P., Mannervik B. Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem. J. 1995; 311: 453–459
  • Polhuijs M., Mulder G. J., Meyer D. J., Ketterer B. Stereoselective conjugation of 2-bromocarboxylic acids and their urea derivatives by rat liver glutathione transferase 12–12 and some other isoforms. Biochem. Pharmacol. 1992; 44: 1249–1253
  • Mulders T. M. T., Van Ommen B., Van Bladeren P. J., Breimer D. D., Mulder G. I. Stereoselectivity of human liver and intestinal cytosolic fractions as well as purified human glutathione S-transferase isoenzymes towards 2-bromoisovalerylurea enantiomers. Biochem. Pharmacol. 1993; 46: 1775–1780
  • Vos R. M. E., Van Ommen B., Hoekstein M. S. J., De Goede J. H. M., Van Bladeren P. J. Irreversible inhibition of rat hepatic glutathione S-transferase isoenzymes by a series of structurally related quinones. Chem.-Biol. Interact. 1989; 71: 381–392
  • Van B., Ommen J., Ploemen H. T. M., Bogaards J. J. P., Monks T. J., Lau S. S., Van Bladeren P. J. Irreversible inhibition of rat glutathione S-transferase 1–1 by quinones and their glutathione conjugates. Biochem. J. 1991; 276: 661–666
  • Chen W.-J., Boehlert C. C., Rider K., Armstrong R. N. Synthesis and characterization of the oxygen and desthio analogues of glutathione as dead-end inhibitors of glutathione S-transferase. Biochem. Biophys. Res. Commun. 1985; 128: 233–240
  • Adang A. E. P., Brussee J., Meyer D. J., Coles B., Ketterer B., Van der Gen A., Mulder G. J. Substrate specificity of rat liver glutathione S-transferase isoenzymes for a series of glutathione analogues, modified at the γ-glutamyl moiety. Biochem. J. 1988; 255: 721–724
  • Adang A. E. P., Brussee J., Van der Gen A., Mulder G. J. The glutathione binding site in glutathione S-transferases: investigation of the cysteinyl, glycyl and γ-glutamyl domains. Biochem. J. 1990; 269: 47–54
  • Keen J. H., Habig W. H., Jakoby W. B. Mechanism for the several activities of the glutathione S-transferases. J. Biol. Chem. 1976; 251: 6183–6188
  • Miller J. Reaction Mechanisms in Organic Chemistry, C. Eaborn, N. B. Chapman. Elsevier, New York 1968; Vol. 8: 137–179
  • Rietjens I. M. C. M., Soffers A. E. M. F., Hooiveld G. J. E. J., Veeger C., Vervoort J. Quantitative structure-activity relationships based on computer calculated parameters for the overall rate of glutathione S-transferase catalyzed conjugation of a series of fluoronitrobenzenes. Chem. Res. Toxicol. 1995; 8: 481–488
  • Soffers A. E. M. F., Ploemen J. H. T. M., Moonen M. J. H., Wobbes T., Van Ommen B., Vervoort J., Van Bladeren P. J., Rietjens I. M. C. M. Regioselectivity and quantitative structure-activity relationships for the conjugation of a series of fluoronitrobenzenes by purified glutathione S-transferase enzymes from rat and man. Chem. Res. Toxicol. 1996; 9: 638–646
  • Van der Aar E. M., De Groot M. J., Bijloo G. J., Van der Goot H., Vermeulen N. P. E. Structure-activity relationships for the glutathione conjugation of 2-substituted 1-chloro-4-nitrobenzenes by rat glutathione S-transferase 4–4. Chem. Res. Toxicol. 1996; 9: 527–534
  • Van der Aar E. M., Bouwman T., Commandeur J. N. M., Vermeulen N. P. E. Structure-activity relationships for chemical and glutathione S-transferase-catalyzed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes. Biochem. J. 1996; 320: 531–540
  • Kubo Y., Armstrong R. N. Observation of a substituent effect on the stereoselectivity of glutathione S-transferases toward para-substituted 4-phenyl-3-buten-2-ones. Chem. Res. Toxicol. 1989; 2: 144–145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.