390
Views
56
CrossRef citations to date
0
Altmetric
Research Article

The P450 Catalytic Cycle and Oxygenation Mechanism

&
Pages 739-786 | Published online: 22 Sep 2008

References

  • Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W., Gunsalus I. C., Nebert D. W. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42
  • Kedderis G. L., Dwyer L. A., Rickert D. E., Hollenberg P. F. Source of the oxygen atom in the product of cytochrome P-450-catalyzed N-demethylation reactions. Molec. Pharmacol. 1983; 23: 758–760
  • Coon M. J., Vaz A. D. N. Mechanism of microsomal electron transfer reactions: Role of cytochrome P-450. Chem. Scripta 1987; 274: 17–19
  • Archakov A. I., Zhukov A. A. Multiple activities of cytochrome P-450. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1989; Volume 1: 151–175
  • Archakov A. I., Bachmanova G. I. Cytochrome P-450 and Active Oxygen. Taylor and Francis, London 1990
  • Ruckpaul K., Bernhardt R. Biochemical aspects of the mono-oxygenase system in the endoplasmic reticulum of mammalian liver. Cytochrome P-450, K. Ruckpaul, H. Rein. Akademie Verlag, Berlin 1984; 9–57
  • Bast A. Is formation of reactive oxygen by cytochrome P-450 perilous and predictable?. Trends Pharmacol. Sci. 1986; 7: 266–270
  • Gunsalus I. C., Sligar S. G. Oxygen reduction by the P450 monooxy-genase systems. Adv. Enzymol. 1978; 47: 1–44
  • Guengerich F. P., Shimada T., Bondon A., Macdonald T. L. Cytochrome P-450 oxidations and the generation of biologically reactive inter-mediates. Biological Reactive Intermediates IV, C. M. Witmer, R. R. Snyder, D. J. Jollow, G. F. Kaff, J. J. Kocsis, I. G. Sipes. Plenum, New York 1991; 1–11
  • Guengerich F. P. The chemistry of cytochrome P450 reactions. Cytochromes P450: Metabolic and Toxicological Aspects, C. Ioannides. CRC Press, Boca Raton, FL 1996; 55–74
  • De Matteis F. Cytochrome P-450 and the metabolism of environmental chemicals. Iron in Biochemistry and Medicine II, A. Jacobs, M. Worwood. Academic Press, New York 1980; 293–324
  • Ishimura Y. Mechanisms of cytochrome P-450-catalyzed reactions. Cytochrome P-450, R. Sato, T. Omura. Kodansha, Tokyo 1978; 209–227
  • Ishimura Y. Oxygen activation and transfer. Cytochrome P-450, 2nd ed, T. Omura, Y. Ishimura, Y. Fujii-Kuriyama. Kodansha, Tokyo 1993; 80–91
  • Ortiz de Montellano P. R. Oxygen activation and transfer. Cytochrome P-450, P. R. Ortiz de Montellano. Plenum, New York 1986; 217–271
  • Ortiz de Montellano P. R. Cytochrome P-450 catalysis: Radical intermediates and dehydrogenation reactions. Trends Pharmaceut. Sci. 1989; 10: 354–359
  • Okazaki O., Guengerich F. P. Evidence for specific base catalysis in N-dealkylation reactions catalyzed by cytochrome P450 and chloroperoxidase. J. Biol. Chem. 1993; 268: 1546–1552
  • Trager W. F. Oxidative functionalization reactions. Concepts in Drug Metabolism, B. Testa, P. Jenner. Marcel Dekker, Inc., New York 1980; 177–209
  • Fridovich I. Superoxide radical and superoxide dismutase. Acc. Chem. Res. 1972; 5: 321–326
  • Khan A. V., Kasha M. Physical theory of chemiluminescence in systems evolving molecular oxygen. J. Am. Chem. Soc. 1966; 88: 1574–1576
  • Richter C. Redox intermediates between O2 and H2O. Membrane Biochemistry, E. Carafoli, G. Semenza. Springer-Verlag, New York 1979; 113–119
  • Politzer I. R., Griffin G. W., Laseter J. L. Singlet oxygen and biological systems. Chem. Biol. Interact. 1971; 3: 73–93
  • Krinsky N. Biological roles of singlet oxygen. Singlet Oxygen, H. H. Wasserman. Academic Press, New York 1979; 597–641
  • Koppenol W. H. The paradox of oxygen: Thermodynamics versus toxicity. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Alan R. Liss, New York 1988; 93–109
  • Bland J. Biochemical effects of excited state molecular oxygen. J. Chem. Ed. 1976; 53: 274–279
  • Jameson R. F., Blackburn N. J. Activation of oxygen and nitrogen in biological systems. An Introduction to Rio-Inorganic Chemistry, D. R. Williams. CC Thomas, Springfield, IL 1976; 90–119
  • Schenkman J. B., Remmer H., Estabrook R. W. Spectral studies of drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol. 1967; 3: 113–123
  • Werringloer J. Counterpoise-regulation of the steady-state concentration of oxy-cytochrome P-450: A definition of the rate-limiting step in the catalytic cycle of liver microscomal cytochrome P-450. Microsomes, Drug Oxidations and Drug Toxicity, R. Sato, R. Kato. Wiley, New York 1982; 175–186
  • White R. E. The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol. Therapeut. 1991; 49: 21–42
  • Walling C. The nature of the primary oxidants in oxidations mediated by metal ions. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon, Oxford 1982; 85–99
  • Ortiz de Montellano P. R. Oxygen activation and reactivity. Cytochrome P450, P. R. Ortiz de Montellano. Plenum, New York 1995; 245–303
  • Coon M. J., White R. E. Cytochrome P-450, a versatile catalyst in monooxygenation reactions. Metal Ion Activation of Dioxygen, T. G. Spiro. Wiley, New York 1980; 73–123
  • Blake R. C., Coon M. J. Mechanism of action of cytochrome P-450 studies with peracids as oxygen donors. Biochemical and Clinical Aspects of Oxygen, W. S. Caughey. Academic Press, New York 1979; 263–275
  • Blake R. C., Coon M. J. On the mechanism of action of cytochrome P-450. J. Biol. Chem. 1981; 256: 12127–12133
  • Blake R. C., Coon M. J. On the mechanism of action of cytochrome P-450: Spectral intermediates in the reaction with iodosobenzene and its derivatives. J. Biol. Chem. 1989; 264: 3694–3701
  • Castro C. E. Mechanisms of reaction of hemoproteins with oxygen and hydrogen peroxide in the oxidation of organic substrates. Pharmacol. Therap. 1980; 10: 171–189
  • Sligar S. G., Kennedy K. A., Pearson D. C. The chemical basis of mixed function oxidation. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon, Oxford 1982; 837–855
  • Sligar S. G., Gelb M. H., Heimbrook D. C. Bio-organic chemistry and cytochrome P-450-dependent catalysis. Xenobiotica 1984; 14: 63–86
  • Groves J. T., Mc Clusky G. A. Oxo- and peroxo-transition metal species in chemical and biochemical oxidations: Possible models for the oxygen activation and transfer catalyzed by cytochrome P-450. Biochemical and Clinical Aspects of Oxygen, W. S. Caughey. Academic Press, New York 1979; 277–309
  • Groves J. T., Watanabe Y. Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase: Studies of the mechanism of oxygen activation. J. Am. Chem. Soc. 1988; 110: 8443–8452
  • Estabrook R. W., Werringloer J., Masters B. S. S., Peterson J. A. The microsomal electron transport system revisited: A new look at cytochrome P-450 function. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon, Oxford 1982; 811–835
  • Coon M. J., White R. E., Blake R. C. Mechanistic studies with purifled liver microsomal cytochrome P-450: Comparison of O2- and peroxide-supported hydroxylation reactions. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon, Oxford 1982; 857–885
  • Lewis D. F. V. Cytochromes P450: Structure, Function and Mechanism. Taylor & Francis, London 1996
  • White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu. Rev. Biochem. 1980; 49: 315–356
  • Rein H., Jung C., Ristau O., Friedrich J. Biophysical properties of cytochrome P-450, analysis of the reaction mechanism-thermodynamic aspects. Cytochrome P-450, K. Ruckpaul, H. Rein. Akademie Verlag, Berlin 1984; 163–249
  • Fisher M. T., Sligar S. G. Control of heme protein redox potential and reduction rate: Linear free energy relation between potential and ferric spin state equilibrium. J. Am. Chem. Soc. 1985; 107: 5018–5019
  • Fisher M. T., Scarlata S. F., Sligar S. G. High-pressure investigations of cytochrome P-450 spin and substrate binding equilibria. Arch. Biochem. Biophys. 1985; 240: 456–463
  • Griffin B. W., Peterson J. A., Estabrook R. W. Cytochrome P-450: Biophysical properties and catalytic function. The Porphyrins, D. Dolphin. Academic Press, New York 1979; Volume 7: 333–375
  • Hawkins B. K., Dawson J. H. Oxygen activation by heme-containing mono-oxygenases: Cytochrome P-450 and secondary amine monooxygenase. Active site structures and mechanisms of action. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1972; Volume II: 4740–4746
  • Champion P. M. Elementary electronic excitations and the mechanism of cytochrome P450. J. Am. Chem. Soc. 1989; 111: 3433–3434
  • Sugar S. G., Egeberg K. D., Sage J. T., Morikis D., Champion P. M. Alteration of heme axial ligands by site-directed mutagenesis: A cytochrome becomes a catalytic demethylase. J. Am. Chem. Soc. 1987; 109: 7896–7897
  • Poulos T. L., Finzel B. C., Howard A. J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986; 25: 5314–5322
  • Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J. Molec. Biol. 1987; 195: 687–700
  • Griffin B. W., Peterson J. A. Camphor binding by Pseudomonas putida cytochrome P-450: Kinetics and thermodynamics of the reaction. Biochemistry 1972; 11: 4740–4746
  • Sligar S. G. Coupling of spin, substrate and redox equilibria in cytochrome P-450. Biochemistry 1976; 15: 5399–5406
  • Sligar S. G., Cinti D. L., Gibson G. G., Schenkman J. B. Spin state control of the hepatic cytochrome P450 redox potential. Biochem. Biophys. Res. Commun. 1979; 90: 925–932
  • Stellwagen E. Haem exposure as the determinate of oxidation-reduction potential of haem proteins. Nature 1978; 275: 73–74
  • Kassner R. J. A theoretical model for the effects of local nonpolar heme environment on the redox potentials in cytochromes. J. Am. Chem. Soc. 1973; 95: 2674–2677
  • Atkins W. M., Sligar S. G. Tyrosine-96 as a natural spectroscopic probe of the cytochrome P-450cam active site. Biochemistry 1990; 29: 1271–1275
  • Sligar S. G., Gunsalus I. C. A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase. Proc. Natl. Acad. Sci. USA 1976; 73: 1078–1082
  • Schenkman J. B., Sligar S. G., Cinti D. L. Substrate interaction with cytochrome P-450. Hepatic Cytochrome P-450 Monooxygenase System, J. B. Schenkman, D. Kupfer. Pergamon, Oxford 1982; 587–615
  • Gibson G. G., Tamburini P. P. Cytochrome P-450 spin state: Inorganic biochemistry of haem iron ligation and functional significance. Xenobiotica 1984; 14: 27–47
  • Blanck J., Ristau O., Zhukov A. A., Archakov A. I., Rein H., Ruckpaul K. Cytochrome P-450 spin state and leakiness of the monoxygenase pathway. Xenobiotica 1991; 21: 121–135
  • Otsuka J. One interpretation of the thermal equilibrium between high-spin and low-spin states in ferrihemoproteins. Biochim. Biophys. Acta 1970; 214: 233–235
  • Shannon R. D., Prewitt C. T. Revised values of effective ionic radii. Acta Crystallogr. 1970; 1326: 1046–1048
  • Williams R. J. P. Haem-proteins and oxygen. Iron in Biochemistry and Medicine, A. Jacobs, M. Worwood. Academic Press, New York 1974; 183–219
  • Guengerich F. P. Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry 1983; 22: 2811–2820
  • Tuckey R. C., Kamin H. The oxyferro complex of adrenal cytochrome P-450sec: Effect of cholesterol and intermediates on its stability and optical characteristics. J. Biol. Chem. 1982; 257: 9309–9314
  • Light D. R., Orme-Johnson N. R. Beef adrenal cortical cytochrome P-450 which catalyzes the conversion of cholesterol to pregnenolone: Oxidation–reduction potentials of the free, steroid-complexed and adrenodoxin-complexed P-450. J. Biol. Chem. 1981; 256: 343–350
  • Gray R. D. The molecular basis of electron transfer in cytochrome P-450 enzyme systems. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Akademie Verlag, Berlin 1992; Volume 7: 321–350
  • Gray H. B., Ellis W. R., Electron. Bioinorganic Chemistry, I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine. University Sciences Books, Mill Valley, CA 1994; 315–363
  • Closs G. L., Miller J. R. Intramolecular long-distance electron transfer in organic molecules. Science 1988; 240: 440–447
  • Hopfield J. J. The mechanism of electron transfer in the electron transport chain. Oxidases and Related Redox Systems, T. E. King, H. S. Mason, M. Morrison. Pergamon, Oxford 1982; 35–60
  • Xia Z.-X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 Å resolution. J. Molec. Biol. 1990; 212: 837–863
  • Hasinoff B. B. Quantitative structure–activity relationships for the reaction of hydrated electrons with heme proteins. Biochim. Biophys. Acta 1985; 829: 1–5
  • Raag R., Poulos T. L. Crystal structure of the carbon monoxide-substrate–cytochrome P-450cam ternary complex. Biochemistry 1989; 28: 7586–7592
  • Guengerich F. P., Ballou D. P., Coon M. J. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450. Biochem. Biophys. Res. Commun. 1976; 70: 951–956
  • Saito I., Matsuura T., Inoue K. Formation of superoxide ion via one-electron transfer from electron donors to singlet oxygen. J. Am. Chem. Soc. 1983; 105: 3200–3206
  • Tovrog B. S., Kitko D. J., Drago R. S. Nature of the bound O2 in a series of cobalt dioxygen adducts. J. Am. Chem. Soc. 1976; 98: 5144–5152
  • Carter M. J., Engelhardt L. M., Rillema D. P., Basolo F. Oxygen carrier and redox properties of some cobalt chemlates, including vitamin B12r. J. Chem. Soc., Chem. Commun. 1973; 810–812
  • Addison A. W., Burman S. Ligand-dependent redox chemistry of Glycera dibranchiate hemoglobin. Biochim. Biophys. Acta 1985; 828: 362–368
  • Jameson G. B., Ibers J. A. Biological and synthetic dioxygen carriers. Bioinorganic Chemistry, I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine. University Science Books, Mill Valley, CA 1994; 167–251
  • Sarapu A. C., Fenske R. F. The transition metal-isocyanide bond: An approximate molecular orbital study. lnorg. Chem. 1975; 14: 247–253
  • Bursten B. E. Ligand additivity: Applications to the electrochemistry and photoelectron spectroscopy of d6 octahedral complexes. J. Am. Chem. Soc. 1982; 104: 1299–1304
  • Egawa T., Ogura T., Makino R., Ishimura Y., Kitagawa T. Observation of the O—O stretching Raman band for cytochrome P-450cam under catalytic conditions. J. Biol. Chem. 1991; 266: 10246–10248
  • Morrison M. M., Roberts J. L., Sawyer D. T. Oxidation-reduction chemistry of hydrogen peroxide in aprotic and aqueous solution. lnorgan. Chem. 1979; 18: 1971–1979
  • Koppenol W. H., van Burren K. J. H., Butler J., Braams R. The kinetics of the reduction of cytochrome c by the superoxide anion radical. Biochim. Biophys. Acta 1976; 449: 157–168
  • Lee-Ruff E. The organic chemistry of superoxide. Chem. Soc. Rev. 1977; 6: 195–214
  • Hill H. A. O. The superoxide ion and the toxicity of molecular oxygen. New Trends in Bio-Inorganic Chemistry, R. J. P. Williams, J. J. R. F. Da Silva. Academic Press, New York 1978; 173–208
  • Hay R. W. Bio-Inorganic Chemistry. Ellis Norwood, Chichester 1984
  • Ochiai E. Bio-Inorganic Chemistry: An Introduction. Allyn and Bacon, Boston 1977
  • Sawyer D. T., Gibian M. J., Morrison M. M., Seo E. T. On the chemical reactivity of superoxide ion. J. Am. Chem. Soc. 1978; 100: 627–628
  • Wilshire J., Sawyer D. T. Redox chemistry of dioxygen species. Ace. Chem. Res. 1979; 12: 105–110
  • Chin D.-H., Chiericato G., Nanni E. J., Sawyer D. T. Proton-induced disproportionation of superoxide ion in aprotic media. J. Am. Chem. Soc. 1982; 104: 1296–1299
  • Babcock G. T., Varotsis C., Zhang Y. O2 activation in cytochrome oxidase and other heme proteins. Biochim. Biophys. Acta 1992; 1101: 192–194
  • Martinis S. A., Ropp J. D., Sligar S. G., Gunsalus I. C. Molecular recognition by cytochrome P-450cam: Substrate specificity, catalysis and electron transfer. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1991; Volume 4: 54–86
  • Imai Y., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the cytochrome P-450cam mono-oxygenase: A possible role of the hydroxy amino acid in oxygen activation. Proc. Natl. Acad. Sci. USA 1989; 86: 7823–7827
  • Pelletier H., Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 1992; 258: 1748–1755
  • Lee-Robichaud P., Wright J. N., Akhtar M. E., Akhtar M. Modulation of the activity of human 17α-hydroxylase-17,20-lyase(CYP17) by cytochrome b5: Endocrinological and mechanistic implications. Biochem. J. 1995; 308: 901–908
  • Gerber N. C., Sligar S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation. J. Biol. Chem. 1994; 269: 4260–4266
  • Raag R., Poulos T. L. X-ray crystallographic structural studies of P-450cam: Factors controlling substrate metabolism. Frontiers in Biotransformation, Volume 7, K. Ruckpaul, H. Rein. Taylor and Francis, London 1992; 1–43
  • Blanck J., Smettan G., Greschner S. The cytochrome P-450 reaction mechanism—kinetic aspects. Cytochrome P-450, K. Ruckpaul, H. Rein. Akademie-Verlag, Berlin 1984; 111–162
  • Mackenzie P. I. Structure and regulation of UDP glucuronosyltransferase. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1990; Volume 2: 211–243
  • Beratan D. N., Onuchic J. N., Betts J. N., Bowler B. E., Gray H. B. Electron-tunneling pathways in ruthenated proteins. J. Am. Chem. Soc. 1990; 112: 7915–7921
  • Beratan D. N., Betts J. N., Onuchic J. N. Tunneling pathway and redox-state-dependent electronic couplings at nearly fixed distance in electron-transfer proteins. J. Phys. Chem. 1992; 96: 2852–2855
  • Beratan D. N., Onuchic J. N., Winkler J. R., Gray H. B. Electron-tunneling pathways in proteins. Science 1992; 258: 1740–1741
  • Ruckpaul K., Rein H., Blanck J. Regulation mechanisms of the activity of the hepatic endoplasmic cytochrome P-450. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1989; Volume 1: 1–65
  • Swinney D. C., Ryan D. E., Thomas P. E., Levin W. Evidence for concerted kinetic oxidation of progesterone by purified rat hepatic cytochrome P-450g. Biochemistry 1988; 27: 5461–5470
  • Sugimoto H., Tung H.-C., Sawyer D. T. Formation, characterization and reactivity of the oxene adduct of [tetrakis (2,6-dichlorophenyl)porphinato] iron(III) perchlorate in acetonitrile: Model for the reactive intermediate of cytochrome P-450. J. Am. Chem. Soc. 1988; 110: 2465–2470
  • Egawa T., Shimada H., Ishimura Y. Evidence for compound I formation in the reaction of cytochrome 450cam with m-chloroperbenzoic acid. Biochem. Biophys. Res. Commun. 1994; 201: 1464–1469
  • Miller V. P., De Pillis G. D., Ferrer J. C., Mauk A. G., Ortiz de Montellano P. R. Monooxygenase activity of cytochrome c peroxidase. J. Biol. Chem. 1992; 267: 8936–8942
  • Egan R. W., Gale P. H., Vandenheuvel W. J., Baptista E. M., Kuehl F. A. Mechanism of oxygen transfer by prostaglandin hydroperoxidase. J. Biol. Chem. 1980; 255: 323–326
  • Reynolds C. A., King P. M., Richards W. G. Computed redox potentials and the design of bioreductive agents. Nature 1988; 334: 80–82
  • Vaz A. D. N., Roberts E. S., Coon M. J. Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450: Mechanistic implications for catalysis by oxygen-derived peroxide. J. Am. Chem. Soc. 1991; 113: 5886–5887
  • Traylor T. G., Xu F. Model reactions related to cytochrome P-450: Effects of alkene structure on the rates of epoxide formation. J. Am. Chem. Soc. 1988; 110: 1953–1958
  • Yin H., Anders M. W., Korzekwa K. R., Higgins L.-A., Thummel K. E., Kharasch E. D., Jones J. R. Designing safer chemicals: Predicting the rates of metabolism of halogenated alkanes. Proc. Natl. Acad. Sci. USA 1995; 92: 11076–11080
  • Cnubben N. H. P., Peelen S., Borst J.-W., Vervoort J., Veeger C., Rietjens I. M. C. M. Molecular orbital-based quantitative structure–activity relationship for the cytochrome P450-catalyzed 4-hydroxylation of halogenated anilines. Chem. Res. Toxicol. 1994; 7: 590–598
  • Tyrakowska B., Cnubben N. H. P., Soffers A. E. M. F., Wobbes T., Rietjens I. M. C. M. Comparative MO-QSAR studies in various species including man. Chem.-Biol. Interact. 1996; 100: 187–201
  • Korzekwa K. R., Jones J. R., Gillette J. R. Theoretical studies on cytochrome P-450 mediated hydroxylation: A predictive model for hydrogen atom abstractions. J. Am. Chem. Soc. 1990; 112: 7042–7046
  • Pudzianowski A. T., Loew G. H. Hydrogen abstractions from methyl groups by atomic oxygen: Kinetic isotope effects calculated from MNDO/UHF results and an assessment of their applicability to monooxygenasedependent hydroxylations. J. Phys. Chem. 1983; 87: 1081–1085
  • Parton R. F., Vankelecom I. F. J., Casselman M. J. A., Bezoukhanova C. P., Uytterhoeven J. B., Jacobs P. A. An effective mimic of cytochrome P-450 from a zeolite-encaged iron complex in a polymer membrane. Nature 1994; 370: 541–544
  • Karki S. B., Dinnocenzo J. P., Jones J. P., Korzekwa K. R. Mechanism of oxidative amine dealkylation of substituted N,N-dimethylanilines by cytochrome P-450: Application of isotope effect profiles. J. Am. Chem. Soc. 1995; 117: 3657–3664
  • Lu A. Y. H. Deuterium isotope effect and its significance in cytochrome P-450 catalyzed reactions. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1992; Volume 7: 351–363
  • Hanzlik R. P., Hogberg K., Judson C. M. Microsomal hydroxylation of specifically deuterated monosubstituted benzenes: Evidence for direct aromatic hydroxylation. Biochemistry 1984; 23: 3048–3055
  • Rietjens I. M. C. M., Soffers A. E. M. F., Veeger C., Vervoort J. Regioselectivity of cytochrome P-450 catalyzed hydroxylation of fluorobenzenes predicted by calculated frontier orbital substrate characteristics. Biochemistry 1993; 32: 4801–4812
  • Marnett L. J., Kennedy T. A. Comparison of the peroxidase activity of hemoproteins and cytochrome P450. Cytochrome P450, P. R. Ortiz de Montellano. Plenum, New York 1995; 49–80
  • Hanson L. K. Axial ligand effects on iron and manganese prophyrins: Extended Hiickel calculations of cyt P450 analogs and of O2 binding to iron and managanese. Int. J. Quantum Chem., Quantum Biol. Symp. 1979; 6: 73–87
  • Loew G. H., Kirchner R. F. Electronic structure and electric field gradients in oxyhemoglobin and cytochrome P-450 model compounds. J. Am. Chem. Soc. 1975; 97: 7388–7390
  • Rohmer M.-M., Loew G. H. Electronic structure and properties of model oxy and carboxy ferrous cytochrome P450: Comparison of semi-empirical and ab-initio calculations. Int. J. Quantum Chem., Quantum Biol. Symp. 1979; 6: 93–104
  • Rein H., Jung C. Metabolic reactions: Mechanisms of substrate oxygenation. Cytochrome P-450, J. B. Schenkman, H. Griem. Springer-Verlag, Berlin 1993; 105–122
  • Veitch N. C., Williams R. J. P. The molecular basis of electron transfer in redox enzyme systems. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1992; Volume 7: 279–320
  • Andersson L. A., Dawson J. H. EXAFS spectroscopy of hemecontaining oxygenases and peroxidases. Struct. Bond. 1990; 74: 1–40
  • Mueller E. J., Loida P. J., Sligar S. G. Twenty-five years of 450cam, research: Mechanistic insights into oxygenase catalysis. Cytochrome P450, P. R. Ortiz de Montellano. Plenum, New York 1995; 83–124
  • Woggon W.-D., Matile S. Modelling of the active site of cytochrome P-450 by means of synthetic analogues. Frontiers in Biotransformation, K. Ruckpaul, H. Rein. Taylor and Francis, London 1992; Volume 7: 59–89
  • Groves J. T., Han Y.-Z. Models and mechanisms of cytochrome P450 action. Cytochrome P450, 2nd ed, P. R. Ortiz de Montellano. Plenum, New York 1995; 3–48
  • Welborn C. H., Dolphin D., James B. R. One-electron electrochemical reduction of a ferrous porphyrin dioxygen complex. J. Am. Chem. Soc. 1981; 103: 2869–2871
  • Kobayashi K., Iwamoto T., Honda K. Spectral intermediate in the reaction of ferrous cytochrome 450cam, with superoxide anion. Biochem. Biophys. Res. Commun. 1994; 201: 1348–1355
  • Alvarez J. C., Ortiz de Montellano P. R. Thianthrene 5-oxide as a probe of the electrophilicity of hemoprotein oxidizing species. Biochemistry 1992; 31: 8315–8322
  • Miller V. P., Tschirret-Guth R. A., Ortiz de Montellano P. R. Arch. Biochem. Biophys. 1995; 319: 333–340
  • Adams C., Adams P. A. A comparative study of pH/activity profiles for the anaerobic H2O2 and alkyl hydroperoxide supported N demethylation of N-methylaniline catalyzed by alkaline haematin and microsomal cytochrome P-450. J. Inorgan. Biochem. 1992; 45: 47–52
  • Pratt J. M., Ridd T. I., King L. J. Activation of H2O2 by P450: Evidence that the hydroxylating intermediate is iron(III)-coordinated H2O2 and not the ferryl FeO3+ complex. J. Chem. Soc., Chem. Commun. 1995; 2297–2298
  • Akhtar M., Corina D., Miller S., Shyadehi A. Z., Wright J. N. Mechanism of the acyl-carbon clearage and related reactions catalyzed by multifunctional P-450s: Studies on cytochrome P-45017α. Biochemistry 1994; 33: 4410–4418
  • Cole P. A., Robinson C. H. Mechanistic studies on a placental aromatase model reaction. J. Am. Chem. Soc. 1991; 113: 8130–8137
  • Newcomb M., Le Tadic M.-H., Putt D. A., Hollenberg P. F. An incredibly fast apparent oxygen rebound rate constant for hydrocarbon hydroxylation by cytochrome P-450 enzymes. J. Am. Chem. Soc. 1995; 117: 3312–3313
  • Sligar S. G., Gunsalus I. C. Proton coupling in the cytochrome P-450 spin and redox equilibria. Biochemistry 1979; 18: 2290–2295
  • Hachino Y., Matsubara T., Hagihara B. pH-dependent interaction of microsomal cytochrome P-450 with substrates. I. Effect of pH upon the interaction of exogenous substrates with membrane-bound cytochrome P-450. Chem. -Biol. Interact. 1981; 37: 181–190
  • Rohmer M.-M., Barry M., Dedieu A., Veillard A. End-on versus side-on coordination of dioxygen: An ab initio calculation for peroxotitaniumporphyrin. Int. J. Quantum Chem., Quantum Biol. Symp. 1977; 4: 337–342
  • Bonnett R. Oxygen activation and tetrapyrroles. Essays Biochem. 1981; 17: 1–51
  • Faulkner K. M., Shet M. S., Fisher C. W., Estabrook R. W. Electrocatalytically driven ω-hydroxylation of fatty acids using cytochrome P450 4A 1. Proc. Natl. Acad. Sci. USA 1995; 92: 7705–7709
  • Sharonov B. P., Govorova N. Y., Lyzlova S. N. Antioxidant proper-ties and degradation of serum proteins by active forms of oxygen (O2−, OCl−) generated by stimulated neutrophils. Biokhimiya 1988; 53: 707–715
  • Gerber N. C., Sligar S. G. Catalytic mechanism of cytochrome P-450; Evidence for a distal charge relay. J. Am. Chem. Soc. 1992; 114: 8742–8743
  • Vaz A. D. N., Coon M. J. On the mechanism of action of cytochrome P450: Evaluation of hydrogen abstraction in oxygen-dependent alcohol oxidation. Biochemistry 1994; 33: 6442–6449
  • Vaz A. D. N., Pernecky S. J., Raner G. M., Coon M. J. Peroxo-iron and oxenoid-iron species as alternative oxygenating agents in cytochrome P450-catalyzed reactions: Switching by threonine-302 to alanine mutagenesis of cytochrome P450 2B4. Proc. Natl. Acad. Sci. USA 1996; 93: 4644–4648
  • Atkins W. M., Sligar S. G. Metabolic switching in cytochrome P-450cam: Deuterium isotope effects on regiospecificity and the monoxygenase/oxidase ratio. J. Am. Chem. Soc. 1987; 109: 3654–3760
  • Peover M. E. Electrochemistry of aromatic hydrocarbons and related sub-stances, Electroanal. Chem. 1967; 2: 1–51
  • da Silva J. J. R. F., Williams R. J. P. The Biological Chemistry of the Elements. Clarendon, Oxford 1991
  • Ullrich V., Wolf J., Amadori E., Staudinger H. The mixed function oxygenation of 4-halogenoacetanilides in rat liver microsomes and model systems. Hoppe-Seyler's Zeitschr. Physiol. Chem. 1968; 349: 85–94
  • Ullrich V., Kulthan H. Mechanisms of metal-containing monooxygenases. Oxygen and Oxy-radicals in Chemistry and Biology, M. A. J. Rodgers, E. L. Powers. Academic Press, New York 1981; 497–505
  • Ullrich V., Staudinger H. Oxygen reactions in model systems. Microsomes and Drug Oxidations, J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, G. J. Mannering. Academic Press, New York 1969; 199–217
  • Harding L. B., Goddard W. A. The mechanism of the ene reaction of singlet oxygen with olefins. J. Am. Chem. Soc. 1980; 102: 439–449
  • Augusto O., Beilan H. S., Ortiz de Montellano P. R. The catalytic mechanism of cytochrome P450: Spin-trapping evidence for one electron substrate oxidation. J. Biol. Chem. 1982; 257: 11288–11295
  • Akhtar M., Njar V. C. O., Wright J. N. Mechanistic studies on aromatase and related C—C bond cleaving P-450 enzymes. J. Steroid Biochem. Malec. Biol. 1993; 44: 375–387
  • Bernhardt R. Cytochrome P450: Structure, function and generation of re-active oxygen species. Rev. Physiol. Biochem. Pharmacol. 1995; 127: 137–221
  • Shimura Y. A quantitative scale of the spectrochemical series for the mixed ligand complexes of d6 metals. Bull. Chem. Soc. Japan 1988; 61: 693–698
  • James A. M., Lord M. P. Macmillan's Chemical and Physical Data. Macmillan, London 1992
  • Lewis D. F. V. Physical methods in the study of the active site geometry of cytochromes P-450. Drug Metab. Rev. 1986; 17: 1–66
  • Lippard S. J., Berg J. M. Principles of Bioinorganic Chemistry. University Science Books, Mill Valley, CA 1994
  • CRC Handbook of Chemistry and Physics, 1st student ed., R. C. Weast. CRC Press, Boca Raton, FL 1991
  • Lewis D. F. V., Ioannides C., Parke D. V. A quantitative structure-activity relationship study on a series of para-substituted toulenes binding to cytochrome P450 2B4 (CYP284) and also their hydroxylation rates. Biochem. Phannacol. 1995; 50: 619–625
  • White R. E., Mc Carthy M. B. Active site mechanics of liver microsomal cytochrome P-450. Arch. Biochem. Biophys. 1986; 246: 19–32
  • Perring K. D. Application of tritium nuclear magnetic resonance spectroscopy in kinetic and labelling studies. Ph. D. thesis, University of Surrey. 1979
  • Radzicka A., Wolfenden R. Comparing the polarities of the amino acids: Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 1988; 27: 1664–1670
  • Hoare J. P. Oxygen. Standard Potentials in Aqueous Solution, A. J. Bard, R. Parsons, J. Jordan. Marcel Dekker, Inc., New York 1985; 49–66
  • Bratsch S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref Data 1989; 18: 1–21
  • Fee J. A. Superoxide, superoxide dismutases and oxygen toxicity. Metal lon Activation of Dioxygen, T. G. Spiro. Wiley, New York 1980; 209–237
  • Sen R. K., Zagal J., Yeager E. The electrocatalysis of O2 reduction. Inorg. Chem. 1977; 16: 3379–3380

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.